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ABSTRACT
Understanding how players interact with the mobile game app on
smartphone devices is important for game experts to develop and
refine their app products. Conventionally, the game experts achieve
their purposes through intensive user studies with target players
or iterative UI design processes, which can not capture interaction
patterns of large-scale individual players. Visualizing the recorded
logs of users’ UI operations is a promising way for quantitatively
understanding the interaction patterns. However, few visualization
tools have been developed for mobile game app interaction, which
is challenging with multi-touch dynamic operations and complex
UI. In this work, we fill the gap by presenting a visualization ap-
proach that aims to understand players’ interaction patterns in
a multi-touch gaming app with more complex interactions sup-
ported by joysticks and a series of skill buttons. Particularly, we
identify players’ dynamic gesture patterns, inspect the similarities
and differences of gesture behaviors, and explore the potential gaps
between the current mobile game app UI design and the real-world
practice of players. Three case studies indicate that our approach is
promising and can be potentially complementary to theoretical UI
designs for further research.

CCS CONCEPTS
• Human-centered computing → Human computer interac-
tion (HCI); Visualization; User studies.
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1 INTRODUCTION
Understanding players’ interaction patterns in smartphone devices
with mobile game apps is important for game experts to develop
and refine their app products [10, 14, 40]. For example, inspect-
ing players’ gesture sequences in a gaming app can help its game
user experience (UX) researcher determine the players’ gaming
expertise and understand the players’ engagement; understanding
how players interact with mobile multi-touch devices can help the
user interface (UI) designers verify if the intended UI of the app
is convenient enough for the gamers, thus enabling appropriate
modification and optimization of the original UI design.

Conventionally, game experts study players’ interaction pat-
terns with mobile game apps through intensive user studies with
target players or iterative UI design processes to achieve their pur-
poses [19, 25, 39]. For example, UX experts would pay attention to
the players’ performance by extracting and analyzing their in-game
behaviors to understand whether they are fully engaged in the
game; UI design experts mainly propose mobile game UI designs
based on some theoretical experiments and comparison with the de-
signs of competitor products, trying to provide more user-friendly
interface designs and ensure a smooth players’ interaction. While
these evaluation methods are informative and can potentially help
identify the general patterns of the players’ gaming interactions via
mobile app UI, they could not provide quantitative understanding
of user interactions with the app product itself.

One alternative way to assist game experts to study players’
interactions with mobile game apps is to directly record the user
interaction data from mobile devices by developing logging and
analysis tools. Visualization is a promising way to enable game
experts to dig into deeper the interaction data [15, 18, 26]. How-
ever, most existing visualization tools have long been developed
for desktop-based interaction data and cannot be simply borrowed
and applied in mobile game scenarios [31, 32]. It becomes more
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challenging when the mobile game app supports intuitive direct-
manipulation and multi-touch operations, e.g., the joysticks moving
towards multiple directions, i.e., up, down, left, right, and different
skill buttons possessed by the game character in the app, mimick-
ing real-world metaphors. There have been some works seeking
to measure and analyze low-level interaction metrics on mobile
touch screen devices by inviting participants to perform various con-
trolled tasks [1, 2]. Nevertheless, most of them focus on aggregating
primitive metrics such as task completion time and accuracy/error
rate, which do not always capture high-level interaction issues
that players may encounter in real-world usage scenarios. Some
studies present visualization methods for low-level interaction logs
to identify noteworthy patterns and potential breakdowns in in-
teraction behaviors, e.g., elderly users’ interaction behaviors [17],
however, they target at a few specific application interfaces such
as Phone, Address Book and Map that do not require dynamic user
operation. For mobile game that supports multi-touch options (e.g.,
with joysticks), players usually have more dynamic and complex in-
teractions with the app UI, making it more challenging to visualize
the interaction and identify the patterns behind.

To fill this gap, in this work, we present a visualization approach
that aims to help game experts understand players’ interaction
patterns in the context of a multi-touch gaming app with joysticks
and skill buttons and further improve its UI design. Particularly, we
first identify players’ dynamic gesture patterns that correspond to
a series of interaction data. Then, we develop a visualization tool to
help inspect the similarities and differences of gesture behaviors of
players with different gaming expertise and explore the potential
gaps between the current mobile game app UI design and real-
world practice of players. We evaluate our approach on three cases
(i.e., interaction skill comparison, individual interaction skill, and
user interface design verification). Both qualitative feedback and
quantitative results of case studies suggest that our approach is
promising and can be complementary to mobile game players’
behavior understanding and theoretical mobile game UI designs.

Our contributions can be summarized as follows: 1) a gesture-
based logging mechanism that comprehensively records user in-
teraction and identifies players’ gesture patterns; 2) a novel visu-
alization approach that identifies the similarities and differences
of high-level gesture behaviors on a touchable mobile device, and
3) case studies that provide both quantitative and empirical evi-
dence to verify the efficacy of our approach and elicit promising
UI design implications. In the following sections, we briefly survey
the background and related work, followed by an observational
study to identify the mobile interaction data characteristics and
design requirements for the proposed visualization approach. Then,
we carry out three case studies to verify our approach. Finally, we
conclude our work with discussions and limitations and shadow
the potential design implications discovered through our approach.

2 RELATEDWORK
Literature that overlaps with this work can be categorized into three
groups: mobile interaction data analysis, assessment of mobile UI
design, and gesture data analysis.

2.1 Mobile Interaction Data Analysis
User behavior analysis has been intensively studied in the game
domain [23, 28, 31]. Li et al. analyzed players’ actions and game
events to understand reasons behind snowballing and comeback
in MOBA games [31]. These studies mainly focus on in-game play-
ers’ behavior analysis instead of their interaction with the game
devices. The most similar studies come from web search [8, 21, 24],
where statistical analyses of e.g., eye-tracking or mouse cursor data
mainly provide quantitative results. Visualization techniques are
developed to allow researchers to analyze different levels and as-
pects of data in an explorative manner, which can be categorized
into three main classes, namely, point-based, area-of-interest-based,
and approaches that combine both techniques [8]. Among these
methods, the aggregation of fixations over time or participants is
known as a heat map that summarizes illustrations of the analyzed
data and can be found in numerous publications. However, many
methods proposed for desktop website analysis cannot be simply
applied to mobile game apps since these methods are based on
single-point interaction such as mouse or eye movements while
mobile devices support intuitive direct-manipulation and multi-
touch operations [22].

Timelines are frequently used to represent the interaction infor-
mation. Previous solutions have provided static and limited repre-
sentations of them [12]. A new solution was designed to represent
and manipulate timelines, with events represented by a level and a
small colored circle [11]. It also includes vertical black lines among
events that indicate a page change, which provides effective in-
teractive dynamic representations of user sessions. Nebeling et al.
presentedW3Touch to collect user performance data for different
mobile device characteristics and identify potential design problems
in touch interaction [37]. Guo et al. conducted an in-depth study
on modeling interactions in a touch-enabled device to improve web
search ranking [16]. They evaluated various touch interactions on
a smartphone as implicit relevance feedback and compared these
interactions with the corresponding fine-grained interactions in
a desktop computer with a mouse and keyboard as primary input
devices. Bragdon et al. investigated the effect of situational im-
pairments on touch-screen interaction and probed several design
factors of touch-screen gestures under various levels of environmen-
tal demand on attention compared with the status-quo approach
of soft buttons [9]. To date, however, few empirical studies have
been conducted on mining touch interactions with mobile game
apps to understand players’ behaviors and further suggest mobile
application UI designs via a visual analytics approach.

2.2 Assessment of Mobile UI Design
Many mobile applications, particularly game apps such as ARPG
(Action Role Playing Game), introduce gesture operation to control
the game character in the game app freely [20, 41]. However, no
single gesture operation can resolve all the interaction issues in the
mobile game application scenarios due to different screen sizes, in-
dividual behaviors, and the form of different controls used. Besides,
gesture operation requires extensive learning. Thus, most existing
mobile game applications, particularly role-playing games, adopt a
virtual joystick and skill buttons for players’ interaction [5].
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Previous studies that focus on the assessment of mobile UI de-
sign can be summarized into two categories, qualitative methods
and quantitative methods. For example, when designing mobile app
interfaces, targets are generally large to make it easy for users to
tap [4]. The iPhone Human Interface Guidelines of Apple recom-
mend a minimum target size of 44 pixels wide * 44 pixels tall [13].
The Windows Phone UI Design and Interaction Guide of Microsoft
suggests a touch target size of 34 pixels with a minimum touch
target size of 26 pixels * 26 pixels. The developer guidelines of Nokia
suggest that the target size should not be smaller than 1 cm * 1
cm or 28 pixels * 28 pixels. Although these guidelines provide a
general measurement for touch targets, they are inconsistent and
do not consider the actual varying sizes of human fingers. In fact,
the suggested sizes are significantly smaller than the average finger,
which may lead to many interaction issues for mobile app users.
Hrvoje et al. presented a set of five techniques, called dual finger
selections, which leveraged recent developments in multitouch
sensitive displays to help users select extremely small targets [7].
The UED team of Taobao researched to determine hotspots and
dead-ends and to identify the control size using the thumb1; they
concluded that the minimum target size should be 11 mm by single
thumb operation to achieve an average accuracy higher than 95%.
However, most existing works have focused on the vertical screen
mode by single-hand operation, and only a few have discussed
the landscape mode using both hands. In this work, we focus on
the assessment of virtual joystick and skill buttons by leveraging
players’ interaction data with the mobile game app to analyze the
triggering and moving ranges of virtual joystick and skill set areas.

Regarding the quantitative methods, researchers have beenwork-
ing on modeling user perception and subjective feedback of user
interface, e.g., the judgment of aesthetics [36], visual diversity [6],
brand perception [47], and user engagement [46]. Typically, a set
of visual descriptors would be compiled to depict a UI page in
terms of e.g., color, texture, and organization. Specifically, user per-
ception data are collected at scale and corresponding models are
constructed based on some hand-crafted features [47]. However,
feature engineering cannot ensure a comprehensive description of
all the aspects of UI. Recently, deep learning has demonstrated its
decent performance on learning representative features [27]. For
example, a convolutional neural network is adopted to predict the
look and feel of certain graphic designs. Wu et al. leveraged deep
learning models to predict user engagement level on animation
of user interfaces [46]. Similarly, perceived tappability of inter-
faces [42] and user performance of menu selection [34] can also be
predicted with the assistance of deep learning methods. However,
the existing studies provide prediction scores of user perception
towards different UI designs while in our work, we study how
players experience in real-world practice via the current design of
mobile game UI by visually analyzing their interaction patterns and
shadow the design implication of mobile game UI interface.

2.3 Gesture Data Analysis
Owing to the pervasiveness of multi-touch devices and wide us-
age of pen manipulation or finger gestures, a great number of
researchers have conducted on stroke gestures analysis generated

1http://www.woshipm.com/pd/1609.html

by users [29, 43, 44, 48]. Most of the related existing works focus
on gesture recognition, which matches gestures with target ges-
tures in the template library based on their similarity. For example,
Wobbrock et al. developed an economical gesture recognizer called
$1, which is easy to incorporate gestures into UI prototypes [45].
They employed a novel gesture recognition procedure, including
re-sampling, rotating, scaling and matching without using libraries,
toolkits or training. Yang Li developed a single-stroke and template-
based gesture recognizer, which calculates a minimum angular
distance to measure similarity between gestures [33]. Ouyang et al.
presented a gesture short-cut method called Gesture Marks, which
enables users to use gestures to access websites and applications
without having to define them first [38]. In order to understand
the articulation patterns of user gestures, Anthony et al. studied
the consistency of gestures both between-users and within-users
and some interesting patterns have been revealed [3]. Some works
conduct research on different users, such as children [1, 2], elderly
people [35], and people with motor impairments [44], aiming to
improve user experiences on mobile device interactions.

In this work, instead of gesture recognition, we focus on ana-
lyzing user behaviors to find similar and preferred stroke gestures,
i.e. similar operations generated by players when playing games.
Considering different features of stroke gestures in terms of posi-
tion, direction, shape and so on, we cluster stroke gestures to reveal
users’ common behaviors by resampling a stroke gesture as a point
path vector, followed by a definition of a distance function and
clustering algorithms.

3 OBSERVATIONAL STUDY
To understand the mobile game app interaction data characteristics
and identify the design requirements of our visualization approach,
we worked with a team of experts from an Internet game company,
including two UX analysts (E.1, male, age: 24 and E.2, female, age:
26), one data analyst (E.3, male, age: 25) and two game UI designers
(E.4, female, age: 24 and E.5, female, age: 25), a typical setup for a
game UX team in the company. All of them have been in the game
industry for more than two years. To obtain an understanding of
players’ interaction patterns and experiences with the mobile game
app, the game experts have different responsibilities. Particularly,
E.1 and E.2 would conduct two main approaches, namely, in-game
interaction data analysis with the help of E.3 and subjective in-
terview with the testing players to understand their interaction
patterns and provide UI design suggestions for E.4 and E.5. To
obtain detailed information of the current practice of the game ex-
perts, with consent, we shadowed the team’s daily working process,
including videotaping how they observed players experiencing the
game, conducted testing experiments, and on-site interviews with
the players. Later, we carried out retrospective analysis together
with the game team on their conventional practices.

Participants. The game experts recruited 18 participants (5 fe-
male, avg. age: 24) from a local university. They were undergraduate
and postgraduate students. Some of them are novice players, en-
suring that the study of players’ interaction applies to different
expertise of target users.
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Procedure. In the prior study, the participants were first asked
to complete a task by a mobile app similar to the game of Whack-
A-Mole2 using a mobile phone device with the size of 11.07 cm *
6.23 cm and the resolution of 1920 * 1080p. Particularly, the mobile
screen is divided into multiple small squares, of which a random
square turns red, requiring the participants to accurately click on
within 1 second. In this experiment, the size of the square and its
position were randomly combined, and the participants needed to
click 100 times consecutively and this lasts for about one and a half
minutes. The participants held their hands horizontally and clicked
on the screen with their thumbs. The square size was designed as
a variable with the side length taking from 6mm to 15mm. The
keystroke time is defined as the time from the appearance of the
red square to the time when the player clicks on the screen and
the game experts calculated the distance from the red square to the
lower-left corner of the screen. The game experts distinguished the
square size and position for data statistics.

Figure 1: (a) The participants were required to hold the
phone horizontally and click on the randomly appeared red
square with different sizes with their thumbs on the screen;
(b) The game experts covered the main operation regions
of the mobile game app interface to ensure that the partici-
pants operate based on their ownhabits for an objective eval-
uation; (c) Identifying the comfortable clicking zones for the
left thumb, i.e., the shortest response time; (d) Translating
the coordinates to the distances between the center of the
joystick and the left and bottom of the screen.

Result Analysis. To match players’ real-world usage scenarios
and regarding the size and pixel adaption of different mobile phones,
the game experts take “mm” as the measurement unit instead of
pixel. As shown in Figure 1(c), the most comfortable zone for the
left thumb’s clicking (i.e., the shortest reaction time) is the area
with a radius of 27.5 – 41.3 mm. Considering the occlusion of the
combat interface when the joystick is moved to the middle of the
screen, the UI designers maintained that the secondary comfort
zone (13.8 – 27.5 mm) is recommended as the design area. The
designers further converted to the distances between the center
of the joystick and the left and bottom of the screen, i.e., 9.8 mm –
19.4 mm. The experts also investigated other game competitors’ UI
designs and identified that most of the center of the joystick keeps
at least a 10 mm distance from the left and lower corners of the
2https://wordwall.net/about/template/whack-a-mole

screen (Figure 1(d)). Note that the results are based on the randomly
appearing square button and the focus area is the recommended
design area, i.e., the lower left part of the screen when holding
the phone horizontally. Specifically, when the side length is set
to 12 mm, the accuracy of square clicking3 can be larger than
90% (Table 1). The joystick size of game competitors is basically
consistent with experimental results, i.e., between 11.9 and 14.6
mm.

Figure 2: Testing results of the comfortable zone for the
right thumb’s clicking.

Similarly, the UX experts found that the most comfortable zone
for the right thumb’s clicking (i.e., the shortest reaction time) is
also the area with a radius of 27.5 – 41.3 mm, as shown in Fig-
ure 2(a). And the secondary comfort zone, i.e., 13.8 – 27.5 mm is
also recommended as the design area. Although 41.3 – 55 mm is
also a comfortable zone for players to operate, it can easily obscure
the screen. UI design experts suggested that as the 41.3 mm arc is
close to the edge of the screen, some heavy skills can be placed
here, e.g., ultra-low frequency skill buttons. The game experts also
surveyed other game competitors’ low-frequency skill buttons and
concluded that their positions are close to the 27.5 mm arc, i.e., the
most comfortable area (Figure 2(b)).

Following a similar procedure, the game experts found that when
the thumb’s clicking range is within the comfort area recommended
above, 90% accuracy can be ensured if the diameter of the Normal
Attack button is over 9 mm and the diameter of the other skill
buttons is above 8 mm (Table 1). The survey of game competitors
also confirms that the diameter of skill buttons is within 7 to 11
mm and the Normal Attack button is within 11 to 15 mm.

Table 1: Click accuracy of participants.

Size (mm) 7 8 9 10 11 12
Normal Attack

(13.75 – 27.5 mm) 77.3% 77.8% 94.4% 85.7% 87.5% 100.0%

Skills
(27.5 – 41.25 mm) 63.0% 90.6% 92.3% 90.5% 80.0% 100.0%

The results of the above experiments provide some initial guide-
lines for the UI design of their mobile game app. However, UI design
experts (E.4 – 5) commented that “although in general, they are con-
sistent with the survey results of other game competitors, they can be
quite rough and general.” E.1 further commented that “this experi-
ment requires a high degree of concentration but in reality, players
are playing the game in a more relaxed mood.” In other words, the
interaction characteristics of a certain mobile game app are not
3click accuracy: in a single response, participants correctly hit the target as the end. If
the number of hit is greater than 1, the response is considered to be a failure. That is,
the click accuracy is the percentage of the number of times that the finger successfully
hit the stimulating red square for the first time to the total number of the red squares
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fully considered during the testing when the participants were con-
ducting their actions and they are in a state of tension. UI design
experts, therefore, envisioned a more customized and natural way
to learn the players’ interaction patterns with the mobile devices for
inferring the design suggestions for the joystick and skill buttons.
On the other hand, UX experts mainly studied the players’ in-game
performance. However, in-game metrics reflects the level of players’
performance but cannot explain the reasons behind their perfor-
mances, “while a bad interaction with the game app would certainly
lead to poor performance of players, this observation cannot be easily
captured by the in-game metrics,” said E.3. That is, a good way to
identify similarities and differences among players’ interactions
with the mobile game app is still missing for the UX experts.

To ensure that the ontological structure of our approach fits
well into domain tasks, we interviewed the game experts (E.1 –
5) to identify the experts’ primary concerns about the analysis of
players’ interaction patterns with playing the mobile game app and
potential obstacles in their path to efficiently obtaining insights. At
the end of the interviews, the need for a gesture-based visualization
approach to ground the team’s conversation with assessing mobile
interaction patterns emerged as key themes among the feedback
collected. Despite differences in individual expectations for such
approaches, certain requirements were expressed across the board.

R.1 Distinguishing gesture behaviors from a spatiotempo-
ral perspective. Conventionally, the game experts leveraged heat
map visualizations to observe the distribution of clicking spots,
regardless of interactions caused by different fingers’ interactions,
which cannot show the quantitative information. Furthermore, the
collective heat map distribution cannot provide more details of dif-
ferent gesture behaviors that may occur at different timestamps and
positions, failing to shed lights upon players’ interaction patterns.
Therefore, the game experts wished to distinguish different gesture
behaviors from a spatiotemporal perspective.

R.2 Inspecting behavior differences and similarities among
players. One concern of the game experts was that the interaction
patterns cannot be easily inspected only by leveraging the in-game
metrics. For example, the game experts wished to know “what the
common interactions with the mobile device is among the players and
what the difference is”, thus allowing them to understand how the
operation skill may influence their in-game performance, which
can be complementary to the performance of in-game behaviors.

R.3 Identifying interaction areas with appropriate scales
and positions. UI design experts typically focus on three aspects
of designs, i.e., style design, scale design, and position design. While
style design is reflected in the interactive elements, caters to the
gameplay experience, and has sufficient feedback to the player’s
operation behavior, players’ interaction patterns can be largely
influenced by the scale and position designs. Therefore, the game
experts, especially the UI design experts, wanted to identify the ap-
propriate interaction areas in terms of scales and positions that can
reflect the real-world gameplay interaction experiences accurately.

4 APPROACH
In this section, we first illustrate how we collect the gesture-based
interaction data and then introduce our visualizations to help game
experts understand the mobile game app interaction patterns.

4.1 Gesture-based Logging Mechanism
We have developed an application-independent Android program
that can interact with the mobile OS. By detecting every touch
event and retrieving the screen coordinates with the timestamp
of the touchable screen, we can log all the touchable-screen ac-
tions through multiple functions, e.g., ACTION_DOWN (touch the
screen), ACTION_MOVE (move on the screen), and ACTION_UP
(leave the screen). We consider the players’ interaction data as
high-level gestures, which are the trajectories of players’ fingers
on the multi-touch screen that can be recorded as a series of points
generated by the same finger of the player in one session of inter-
action. Particularly, when the player places a finger on the screen,
a starting point 𝑃0 is recorded. The player then moves this finger
to other places, generating several corresponding points (𝑃1, 𝑃2,
..., 𝑃𝑛). When this interaction session terminates, the player raises
his/her finger and ends the recording of the gesture. We define the
gesture 𝑔𝑘 = [𝑃0, 𝑃1, ..., 𝑃𝑖 , ..., 𝑃𝑛], where point 𝑃𝑖 is described in
terms of (𝑥𝑖 , 𝑦𝑖 ) with corresponding timestamp 𝑇𝑖 indicating the
corresponding time-lapse from the beginning. Each gesture trajec-
tory has an associated id, which records the current session the
program identifies during the interactions.

4.2 Gesture-based Visualization
The basic design principle behind our approach is leveraging or
augmenting familiar visual metaphors to enable game experts to
focus on analysis [30]. Considering the gesture data being analyzed
and the above-mentioned requirements, we visually encode the
data in a manner that ensures that the patterns and outliers are
easily distinctive without overwhelming the analysts.

We define a gesture as a series of finger actions, typically starting
with a “finger down”, followed by several “finger moving”, and end-
ing up with “finger lifting”. We adopt a timeline-like metaphor to
align all the actions of the fingers in a radial layout, presenting the
overview of the distribution of finger actions intuitively, as shown
in Figure 3. We choose a radial layout because it allows users to
analyze high-level interactions (e.g., periodic behaviors) and com-
pare the gesture patterns in different stages in a more concentrated
manner. Meanwhile, the mobile game interface could be placed in-
side the radial circles, helping analysts better link temporal events
with the corresponding interaction dots and spatial trajectories on
the screen. We apply three concentric circles to denote the three
fundamental actions of fingers, namely, “finger touching” in the
most inner circle, “finger moving” in the second inner circle, and
“finger lifting” in the outermost circle (R.1). The spatial position of
each finger action is determined by its timestamp and the entire
recorded period is considered in a clockwise direction. One com-
plete and continuous gesture is represented by a Bezier curve that
links the starting action (finger touching) and the ending action
(finger lifting) with a series of finger movements distributed be-
tween the two actions. We also encode gesture durations into the
parameters of two controlling points of the Bezier curve, i.e., the
height of the curve corresponds to the related gesture duration. We
also provide heat map visualization as a qualitative complementary
to the proposed gesture visualization.

In addition, to encode the gestures to concentric circles, we filter
out gesture trajectories based on spatial locations, e.g., we can
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Figure 3: (a) Three different basic finger actions are placed on three concentric circles: finger touching on themost inner circle,
fingermoving on the second inner circle, and finger lifting on themost outer circle. All actions are distributed in the clockwise
direction, as shown by the timestamps aside. A complete gesture starts with a finger touching (“starting” point), followed by
several finger movings, and ends with a finger lifting (“ending” point). We link the “starting” point to the “ending” point by a
curve, as indicated by the blue rectangle. The duration of the gesture can be obtained by calculating the timestamp difference
between the “starting” point and the “ending” point; (b) Select an area (the yellow circle) and its corresponding finger actions
distributed on the concentric circles will be linked by curves; hover on a finger touching action and the gesture trajectory will
be displayed (the blue point and the blue trajectory); (c) Five semantic interactions aremapped onto five outer semantic circles.
Users can self-define the semantic areas by drawing a circle to surround them and assign it certain semantic information.
Different skills are then mapped onto the corresponding outer concentric circles.

visualize the trajectories that correspond to a particular area of the
mobile app interface (R.1). Particularly, we design a spatial-based
query to link the trajectories to the corresponding finger actions
along the concentric circles (see the selected area). We directly
integrate the UI design into the visualization. On the left side of
the view, the interaction within the area controls the orientation
and motion of the game character in the app, and the right side, i.e.,
the five rounded areas correspond to different skills of the game
character. Figure 3(b) presents the use of the spatial-based query
for a relatively long duration of operation, which corresponds to a
gesture trajectory. Most of the finger movements occur on the left
side, whereas quick taps happen on the right side.

Since the skill button interaction represents certain semantic
information, i.e., different skill button indicates different operations
on the game character, we can define the high-level interactions in
the skill semantic space. As shown in Figure 3(c), analysts can self-
define a region, e.g., a circle to surround an area and assign certain
semantic information to the area, and the corresponding finger
actions within the area would be automatically mapped onto the
semantic axes on the outermost semantic circles, which supports
the interactive exploration from the skill semantic perspective (R.2).

Conventionally, to identify the typical interaction patterns on
the mobile game app screen, the heat map is intensively used. One
obvious advantage is the lack of quantitative feedback by using
a heat map that only conveys a sense of qualitative density infor-
mation. After discussion with the game experts, we propose an
interactive clustering method based on the interaction data (R.3).
Particularly, we allow analysts to select the original interaction dots
with a certain radius 𝑅0 and the system automatically calculates the
clustering center 𝑃0 of the selected interaction dots and choose the

h

Figure 4: The selected area is represented by yellow and the
original clustering center is indicated by a red dot; when
choosing the parameter of confidence coefficient as 95%, the
new clustering center is shown by a green dot and the new
adjusted area is represented by a green zone.

area with different confidence coefficients, i.e., identify the most
appropriate center and size of the area that meets certain confi-
dence coefficients. In this way, a new clustering center 𝑃1 could
be generated. We further sort the interaction dots based on the
distance between 𝑃1 and the interaction dot 𝑑𝑘 and the longest
distance is considered as the new radius 𝑅1 (Figure 4).

Once we determine the region for a certain confidence coeffi-
cient, we then extract the gestures within the region to understand
the underlying semantics of the gestures and reveal the common in-
teraction behaviors of players. Note that different gestures contain
various number of interaction dots, we need to resample gestures
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to ensure that all the gesture trajectories are directly comparable.
Given a gesture 𝑔𝑘 , we assume its original number of interaction
dots is 𝑀 and the objective is to sample 𝑁 interaction dots from
𝑔𝑘 with evenly spaced sampling. Specifically, the original gesture
is represented as 𝑔𝑘 = [𝑃0, ..., 𝑃𝑖 , ..., 𝑃𝑀−1] and 𝑃𝑖 = (𝑥𝑖 , 𝑦𝑖 ) and
after sampling, we get a new gesture 𝑣𝑘 = [𝑃𝑠0, 𝑃

𝑠
1, ..., 𝑃

𝑠
𝑖
, ..., 𝑃𝑠

𝑁−1],
where 𝑃0 = 𝑃𝑠0 and 𝑃𝑀−1 = 𝑃𝑠

𝑁−1. They are subjective to

𝑑𝑖𝑠𝑡 (𝑃𝑠𝑖 , 𝑃
𝑠
𝑖+1) =

∑𝑀−2
𝑖=0

√︁
(𝑥𝑖+1 − 𝑥𝑖 )2 + (𝑦𝑖+1 − 𝑦𝑖 )2

(𝑁 − 1) . (1)

In other words, we add the first interaction dot 𝑃0, and then add
a new dot sequentially until 𝑣𝑘 covers 𝑁 − 1 dots, followed by
adding the last interaction dot. Those new interaction dots is gen-
erated from the original gesture 𝑔𝑘 by using linear interpolation.
The next step is to measure the distance between two gestures. Par-
ticularly, given two gesture sampling vectors: 𝑣𝑘 (𝑃𝑖 = (𝑥𝑘𝑖 , 𝑦𝑘𝑖 )),
𝑣ℎ (𝑃𝑖 = (𝑥ℎ𝑖 , 𝑦ℎ𝑖 )), and considering the absolute distance and di-
rections, we combine two distance functions, i.e., Euclid Distance
and Cosine Distance with adjustable weights, and use K-Means to
all sampling gesture vectors. The distance functions are defined as
Euclid Distance:

𝑑1 =

√√√
𝑁−1∑︁
0

(𝑥ℎ𝑖 − 𝑥𝑘𝑖 )2 + (𝑦ℎ𝑖 − 𝑦𝑘𝑖 )2 (2)

and Cosine Distance

𝑑2 = 𝑣𝑘 · 𝑣ℎ/|𝑣𝑘 | |𝑣ℎ |, (3)

where

𝑣𝑘 · 𝑣ℎ =

𝑁−1∑︁
0

(𝑥𝑘𝑖𝑥ℎ𝑖 + 𝑦𝑘𝑖𝑦ℎ𝑖 ) (4)

and

|𝑣𝑘 | |𝑣ℎ | =

√√√
𝑁−1∑︁
𝑖=0

(𝑥2
𝑘𝑖

+ 𝑦2
𝑘𝑖
)

√√√
𝑁−1∑︁
𝑖=0

(𝑥2
ℎ𝑖

+ 𝑦2
ℎ𝑖
) . (5)

5 CASE STUDY
To evaluate our approach, we conduct several case studies, in which
the previous 18 participants are asked to play a mobile game to
collect their interaction data for our analysis. Then, we present
our visualization approach to the game experts to evaluate the
efficacy of our design. Particularly, the evaluation is conducted in
the following three cases to examine whether our visualization
approach fulfills the aforementioned requirements.

5.1 Participants and Procedures
The education backgrounds of the above-mentioned participants
range from computer science, electronic engineering to art designs.
We collect information about the participants’ mobile phone usage,
including their mobile phone operating systems, the size of their
mobile screens, and the frequency of playing mobile games per
week. All of them have the experience of using both IOS andAndroid
mobile operating systems. The size of themobile phone screens they
use ranges from 3.1 to 3.5 inch to above 5.0 inch. Regarding mobile
game experiences, most of the participants (80%) play games for
fun, usually 3 – 4 days per week. Three of the participants consider

themselves experts in playing mobile games, five have intermediate-
level gaming experience, and the others are novices. Their gaming
expertise is based on the number of mobile game apps they have
ever played similar to our testing mobile game app and all of them
have no prior knowledge of our mobile game app, i.e., nor have
they seen it or played with it.

The mobile game app we choose for our study is a type of ARPG,
where the player controls the actions of the main game character
immersed in a well-defined virtual world and resists attacks from
in-gamemonsters. The orientation andmovement of the main game
character are controlled by the player through a virtual joystick
placed on the left side of the mobile screen, while the skill release
controls are placed on the right side of the screen, usually consisting
of five skills (i.e., one Normal Attack in the right-button corner
surrounded by the other four skills). We have studied different
mobile applications (e.g., “address book”, “2048”, “Angry Birds”,
“Temple Run”) and identified that they all share the same set of
basic down/move/up actions. However, “Angry Birds” only involves
limited events of finger move (e.g., launch a bird) and finger down
(e.g., make birds explode). Therefore, we choose the virtual joystick
mobile game that involves lots of finger down/move/up events fully
engaging players via interactions with both hands and has a proper
duration (2 – 5 min on average) and different levels of difficulty.
Thus, the resulting gesture interactions are diverse enough for our
experimental analysis.

5.2 Case One: Interaction Skill Comparison
The objective of the first case study is to differentiate novice play-
ers from the expert ones based on their interaction data with the
mobile multi-touch screen when playing our testing mobile game
app. For the first case study, we recruited two novices (one female
student, age: 25 and one male student, age: 23) and two expert
gamers (male students, age: 20 and 25, respectively) to compare
their interaction skills by using our approach. A single gaming ses-
sion was conducted with each participant for 5 minutes. They were
firstly given a brief overview of the basic operating rules of the
testing mobile game app. Then, each participant played for three
consecutive rounds, and we only collected the operation logs of the
last two attempts. The first attempt served as a training session to
help the participants familiarize with the testing mobile game app.

As shown in Figure 5(1), we applied our visualization approach to
the interaction data of a novice player and identified that the player
has only three finger movement trajectories, indicated by (a), (b),
and (c), respectively. Among the three movement trajectories, (b)
and (c) occur within the first 10 seconds, followed by a long-lasting
movement of over 107 seconds that continues until the end of the
game session. We then observed how the player interacted with the
skill buttons by the five corresponding skill concentric semantic
circles. Most of the five skill buttons are triggered simultaneously
in clockwise order with the Normal Attack (the biggest button)
triggered first followed by the other four skills, as indicated by
the green rectangles. Since the four skills have several seconds for
cooldown, they cannot be triggered immediately if they have been
triggered and the Normal Attack is frequently used. We can con-
clude that the operation of the novice player involves a continuous
movement on the left side of the screen to control the orientation
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Figure 5: (1) Visualization result of a novice player: only three long-lasting moving trajectories were observed (a), (b), and (c).
The skill combinations on the skill semantic circles indicated by the green rectangles show that the player released different
skills without any strategies and did not consider the joystick interaction; (2) Visualization result of an expert player: con-
stant moving operations were witnessed on the left side of the mobile screen ((a) – (d)). Taking an in-depth analysis of each
long-lasting trajectory of movement along with the skill release, the game expert found that after each movement, there is a
combination of skills released. From the shape of gesture trajectories, they conclude that the purpose of the corresponding
movement is to pull the monsters together by attracting their attention. With the ability to pull extremely well and hit the
monsters with different skills, the player certainly takes down the monsters quickly and efficiently.

and movement of the game character in the mobile game app and
consecutive release of the five skills in a clockwise direction. The
left (orientation and movement) and the right operation (skills) are
not combined well. In other words, the player did not have a good
strategy to combine the orientation control and the movement of
the game character effectively with the other five skills to defend
the game character against attacks.

For comparison, we visualize another expert player’s interaction
data, as shown in Figure 5(2). Following the same approach, we first
focused on the long-last movement trajectories, which are defined
by relatively long and high curves that connect the corresponding
“starting” dots (finger down) and “ending” points (finger up). We
identified that at the timestamp of each long-lasting movement,
the skill set on the right side of the screen is triggered in a regular
pattern, i.e., the Normal Attack is typically accompanied by the
other four skills that require a certain cooldown time. Thus, the
efficient combination of the long-lasting movement to control the
orientation of the game character and the release of the skill set
results in the player winning the game.

After comparison, the game experts maintained that the four
skills, except for the Normal Attack, are lower in operations because
of that “a good operation focuses more on joystick control and move-
ment.” (E.1) By contrast, a weak operation depends significantly
on the Normal Attack compared with the other skills, and involves
fewer finger movement on the left side of the mobile screen. From
the visualizations, the game experts commented that “the weak
operation continuously utilizes the Normal Attack during the finger
moving and touching operations” (see the most inner semantic circle
in Figure 5(1)) “while the good operation applies the Normal Attack
regularly and intermittently”.

Figure 6: (a – b) Continuous touchings on skill concentric
circles and nearly all skill triggering points happen simulta-
neously. There is no correlation between movement control
by joystick and skills release in the first two attempts. In the
last attempt, the combination ofmovement control and skill
release becomes obvious.
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Figure 7: The visualization results for a series of attempts to finish a gaming task in a joystick-based mobile game application:
(a) and (b) are results of failed attempts, while (c) is a successful attempt. The patterns in the series of results indicate that
the participant was getting more familiar with the procedure of the mobile application, i.e., the participant gradually paid
attention to the combination of the joystick with the application of different skills. When there was a long-lasting movement,
some skills, apart from Normal Attack, were clicked immediately. Meanwhile, the ratio of Normal Attack significantly drops
and more operations were distributed in the joystick and other four skills (joystick controls the orientation and movement
of the avatar in the mobile game; Normal Attack: ordinary hit on monsters; skill 1 – 4: different levels of hit on monsters).

5.3 Case Two: Individual Interaction Skill
Improvement

In this case, we demonstrate how the game experts leverage our
visualization approach to track the potential improvement of an
individual player’s skills when he/she takes a series of attempts
of playing a mobile game. The game experts invited another two
novices players (a male student with the age of 28 and a female
student with the age of 24) and asked them to carry out a series
of attempts consecutively. Particularly, the participants were first
introduced to get familiar with the basic operations and then played
the mobile game several times. After finishing the attempts, their
interaction data were recorded each time and the game experts
conducted an interview on each of them, separately taking a note
of each interviewee’s response.

Figure 6 shows a case where a participant (male, age: 28) played
the game four times, of which the first two attempts failed to ac-
complish the game task. To be specific, in the first two attempts,
although the participant applied all the skills, they were conducted
successively. We observed that continuous touches occur on the
second, third, and fourth skill buttons, which should be avoided
since that except for the Normal Attack, all the other four skills
have a cooldown time that disables the corresponding skill for a
certain duration. Another phenomenon that can be witnessed is
that nearly all the skill triggering happens simultaneously and there
is no correlation between the movement control by the joystick
and the skill operations. On the other hand, the last two results
correspond to successful attempts. The combination of movement
control and skill release becomes more obvious. The triggering
time intervals between different skills are elongated, as shown in
Figure 6 (d). Furthermore, the movement trajectories are denser
and more concentrated in Figure 6 (d) than that in the previous
attempts. “In the beginning, I was quite nervous and did not know how

to handle so many monsters so I just click on every skill buttons,” said
the participant, “I soon realized that without any strategy I would
never win the game”, so he began to coordinate his both hands.

Another participant made three attempts. In the first two at-
tempts, the participant also failed to finish the gaming task. Partic-
ularly, in the first attempt, the participant only used Normal Attack
and the other two skills. Although the movement was quite inten-
sive, there is no combination with the application of skill release. In
the second attempt, the participant began to use more skills, but in a
random way. Taking a close look at the triggering timestamp of the
skills and movement control, the game experts cannot identify any
correlation. In the last attempt, the participant commented that “I
feel like knowing how to play” when he began to pay attention to the
combination of the joystick with the application of different skills.
For example, when there was a relatively long-lasting movement,
some skills were released immediately. As shown in Figure 7, the
ratio of Normal Attack significantly drops, and more operations are
given to the joystick and are distributed in the four skills evenly.

5.4 Case Three: UI Design Verification
This case focuses on identifying the common behaviors of play-
ers’ interaction with the mobile game app and further verifying
the current UI design of the mobile app interface in real usage
scenarios. To approach this, the game experts covered the main
operation regions of the mobile game app interface to ensure that
the participants operate based on their own habits for an objective
evaluation. As shown in Figure 1(b), the size of the covered region
is approximately 3 cm * 3.5 cm. The game experts invited all the
participants and asked them to use only two thumbs to operation
on the game avatar in the mobile game app for five rounds, no mat-
ter success or failure for accomplishing the gaming task. During
the gaming process, all the participants were asked to keep their
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Table 2: Summary table of touching andmoving scale measurement of joystick with the confidence coefficient of 95% and 99%.

Confidence Coefficient: 95%
joystick original radius sampling number original center original number new center new radius new number distance to the left distance to the bottom diameter
touch 421 8908 (1462.172, 216.930) 1228 (1467.603, 214.247) 146.331 1166 15.86 mm 13.85 mm 15.61 mm
move 444 87223 (1468.190, 237.092) 86174 (1475.237, 234.957) 232.275 81865 15.37 mm 15.18 mm 30.02 mm

Confidence Coefficient: 99%
joystick original radius sampling number original center original number new center new radius new number distance to the left distance to the bottom diameter
touch 421 8908 (1462.172, 216.930) 1228 (1462.172, 216.930) 196.650 1215 16.21 mm 14.02 mm 25.42 mm
move 444 87223 (1468.190, 237.092) 86174 (1470.297, 236.474) 321.171 85312 15.68 mm 15.28 mm 41.51 mm

thumbs in a natural curve and use their finger bellies to touch the
screen while maintaining the stability of the mobile devices. The
mobile device used has a width of 11.07 cm and a height of 6.23 cm.
The resolution of the device was 1920 * 1080 pixels and the OS is
Android. In total, we recorded 45 independent interaction data, in
which about 400 gesture trajectories were considered valid. After
the experiments, the game experts conducted an interview with
the participants to collect their subjective feedback when playing
the mobile game app.

Virtual Joystick UI Verification. The game experts first fo-
cused on the triggering area and moving region of the joystick on
the left side of the mobile screen. We applied interactive clustering
on all the touching sampling dots generated by the participants’
interactions. To obtain the minimum coverage of the triggering area
of the virtual joystick, we covered the interaction area with a yellow
circle with the radius of 𝑅0. Through the interactive clustering, a
new radius 𝑅𝑚𝑖𝑛 is determined. To obtain the upper boundary of
the triggering area, we widened the initial coverage and adjusted
the confidence coefficient to 99%. Another new radius 𝑅𝑚𝑎𝑥 was
observed. Meanwhile, the distance to the left boundary and the
bottom boundary is recorded to locate the specific position of the
new center. The experimental results indicate that the lower and
upper boundary of the triggering area is 15.61 mm and 25.42 mm
based on our method and the distances to the left and the bottom
boundary of the screen were 15.86 mm and 13.85 mm with the
confidence coefficient of 95%. The same procedure can be applied
to determine the moving range of the joystick. We summarize our
findings in Table 2 and Figure 8.

To further identify the major trajectories using the virtual joy-
stick, we clustered the gestures that lie within the boundary of the
moving area of the virtual joystick based on the proposed clustering
method. Eexperimental results show the patterns that occupy the
majority of the trajectories. To be specific, apart from those gestures
with short distances, the gestures with relatively longer distances
are clustered into 13 clusters, representing the main gestures that
demand high workload, i.e., moving fingers with a relatively long
distance. As shown in Figure 9, the new boundary of moving area
of the virtual joystick has covered the most frequent gestures that
take a relatively long distance for fingers to move, which indicates
that the above experimental scale suggestions can support a free
movement according to the participants’ operation habits.

Skill Set UI Verification. Following a similar procedure, the
game experts determined the scale and position of the skill re-
sponding area by adopting interactive clustering that covers all the
touching sampling dots in the skill set area. Table 3 gives a sum-
mary result of the experimental results for the skill set. Particularly,
with the confidence coefficient range of 90% and 95%, the spacing

Figure 8: Distances to the left and bottom and diameter of
joystick when the participants touched and moved freely
with 95% and 99% confidence coefficient.

among skill buttons is in the range of 7.6 mm – 10.25 mm. Due to
the fact that players may easily confuse with the middle two skill
buttons, the spacing should be relatively larger between c and d.
Similarly, the distances between the centers of the skill buttons and
the right/bottom boundary of the mobile screen are in the range of
6.09 mm – 24.10 mm and 5.93 mm – 22.85 mm, while the distances
between the center of the Normal Attack and the right/bottom
boundary are in the range of 9.66 mm – 9.74 mm and 9.36 mm –
9.44 mm, as indicated in Figure 10.

6 DISCUSSION AND REFLECTIONS
6.1 System Performance and Generality
Wefirst asked the game experts to evaluate the insights identified by
our visualization approach. E.1 – 2 reported that “the visualization
displays the interaction patterns of players intuitively”. Convention-
ally, the game team needed to watch video replays, and manually
marked segments of interactions: “the time we spent on the entire
process was about 30 minutes since sometimes we had to replay a
certain video segment many times,” said E.1. Our method can vi-
sualize the spatiotemporal attributes of the gesture interactions,
making it easy for the experts to interact with players’ behaviors
with the mobile game app instead of going through the entire video
replay, which largely shortens the analysis time (now around 5
minutes for each session). The UI design experts were very satisfied
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Figure 9: Summary of gesture trajectories that demand fingers to move a relatively long distance.

Table 3: Summary table of touching andmoving scale measurement of joystick with the confidence coefficient of 95% and 99%.

Confidence Coefficient: 90%
skill set original radius sampling number original center original number new center new radius new number distance to the left distance to the bottom diameter
a 169 8908 (156.415, 146.934) 3183 (149.757, 146.309) 79.890 2864 9.66 mm 9.44 mm 5.15 mm
b 90 8908 (94.726, 353.550) 747 (94.396, 354.230) 63.702 672 6.09 mm 22.85 mm 4.11 mm
c 80 8908 (246.772, 321.063) 1263 (247.711, 321.218) 74.087 1136 15.98 mm 20.72 mm 4.78 mm
d 80 8908 (341.600, 243.923) 1341 (339.483, 247.096) 71.902 1206 21.90 mm 15.94 mm 4.64 mm
e 80 8908 (375.057, 92.975) 1075 (372.814, 91.963) 71.109 967 24.05 mm 5.93 mm 4.59 mm

Confidence Coefficient: 95%
skill set original radius sampling number original center original number new center new radius new number distance to the left distance to the bottom diameter
a 169 8908 (156.415, 146.934) 3183 (150.972, 145.146) 109.730 3023 9.74 mm 9.36 mm 7.08 mm
b 90 8908 (94.726, 353.550) 747 (94.782, 354.228) 71.214 709 6.11 mm 22.85 mm 4.59 mm
c 80 8908 (246.772, 321.063) 1263 (248.461, 320.519) 77.606 1199 16.03 mm 20.68 mm 5.01 mm
d 80 8908 (341.600, 243.923) 1341 (339.952, 246.550) 88.189 1273 21.93 mm 15.91 mm 5.69 mm
e 80 8908 (375.057, 92.975) 1075 (373.580,92.420) 78.870 1021 24.10 mm 5.96 mm 5.09 mm

Figure 10: (a) Screen area clustering of skill set; (b) the
distances from the skill set to the boundaries of the mo-
bile screen; (c) the spacing distance between skill buttons
through our experiment.

with our approach’s ability to spot potential UI design issues for
the joystick and skill areas, which serves as a complementary to
traditional methods such as survey other game competitors, “it
helps me obtain detailed UI suggestions by interacting the interface,”
said E.4, “I am now more confident to draw my UI design conclusions
since my subjective feelings can be confirmed,” said E.5.

We also discussed with the five game experts which compo-
nent(s) of our approach can be directly applied to other kinds of
games or apps and which one(s) need customization. They all ap-
preciated that our approach has been already applicable to any kind

of ARPG apps since their functions are quite unified, mainly around
joysticks and skills. The only place that needs customization is the
middle part of the interface, i.e., the mobile game app interface that
provides gaming contexts.

6.2 Design Implications for Mobile Game App
UI

Our visualizations have provided some design implications for the
UI design of all kinds of ARPG apps. Players spend most of the
time operating with the joystick, which is also the most energy-
consuming; therefore, it has the highest requirements for flexibility
and fineness. “The purpose of the virtual joystick is to control the
distance and direction of movement and the orientation of the game
avatar,” said E.4. Participants also reported their requirements for
the virtual joysticks include: 1) flexible and fast control of the po-
sition of the game avatar; 2) precise control of the distance and
direction of movement; 3) lasting operation does not consume too
much energy. The results from our visualizations also indicate that
the finger movement areas should be sufficient enough to ensure
that most areas of the mobile screen are responsive, “it is best to
move anywhere you want,” said one participant (P1, male, age: 25).

In terms of the skill interaction design, UI design experts re-
ported that their design principles are to support clicking on the
graphical representations of the buttons to release skills and to
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display cooldowns when the skills are not available. From the per-
spective of participants, they wanted the design of the skill buttons
to meet the following requirements: 1) to release skills quickly and
easily; 2) to accurately release skills with less attention; 3) to quickly
know when skills will be available. Through the quantitative exper-
imental analysis of participants’ interaction data, UI design experts
found that participants are easy to locate high-frequency buttons
through the edge of the screen, which should be located along the
“fan-shaped” curve. Other lower-frequency operation buttons such
as switching roles can be placed in the area near the 41.3 mm arc,
facilitating easy clicking and locating. In addition, the participants
reported that the middle two skill buttons are more easily noticed
during operation and are suitable for major/important skills, while
skills near the border on both sides are relatively more suitable for
auxiliary skills such as dodging.

Our game experts also pointed out several directions for improv-
ing our visualization approach. E.1 and E.2 hoped that we could
take in the in-game video and metrics from the mobile game app
as a whole, enabling a comprehensive analysis. It is for ensuring
the high “consistency of analysis conclusion.” Meanwhile, the game
experts commented that “the method has the potential to be de-
veloped into a training tool to support a retrospective analysis of
players’ performance.” The UI design experts (E.4 – 5) also hoped
that we could include more in-game contents. For example, a proper
number of monsters and stable in-game fighting duration together
with appropriate UI design can not only prevent the players from
“being in a state of high operating frequency all the time”, but also
“bring the players a sense of satisfaction”.

7 CONCLUSION
In this work, we introduce a visualization approach to explore
the interaction data of players on multi-touch mobile devices. The
interaction data is transformed to gesture-based data and new vi-
sualization techniques are integrated to ease the exploration of
interaction data. Three case studies and feedback from the game
experts confirm the efficacy of our approach. In the future, we plan
to include longitudinal studies to validate our approach and include
other kinds of mobile game applications to better spot the limita-
tions. Furthermore, embedding the game video in our visualization
approach is a promising way to better learn how players behave.
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