
d

Y
H

P
D
R

T

R
R
A

P

Journal Pre-proof

HuGe: Towards Human-controllable image Generation in autonomous
riving

uanzhi Zeng, Shiwei Chen, Yutian Zhang, Dong Sun, Yong Wang,
aipeng Zeng

II: S2468-502X(25)00045-2
OI: https://doi.org/10.1016/j.visinf.2025.100262
eference: VISINF 100262

o appear in: Visual Informatics

eceived date : 17 December 2024
evised date : 28 April 2025
ccepted date : 4 August 2025

lease cite this article as: Y. Zeng, S. Chen, Y. Zhang et al., HuGe: Towards Human-controllable
image Generation in autonomous driving. Visual Informatics (2025), doi:
https://doi.org/10.1016/j.visinf.2025.100262.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2025 The Authors. Published by Elsevier B.V. on behalf of Zhejiang University and Zhe-
jiang University Press Co. Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.visinf.2025.100262
https://doi.org/10.1016/j.visinf.2025.100262
http://creativecommons.org/licenses/by-nc-nd/4.0/


Journal Pre-proof

HuGe:
Auton
Yuanzhi
aSchool of In
bAlgorithm D
cCollege of C

A R T I C L
Keywords:
Visualization
Autonomous
Interactive Im
Generative M

dustry,
raining
imiting
anding
er, still
daries.
HuGe,
eather

sertion
iffusion
gn four
sis, and
rviews
image

1. Intro
In rece

ing techno
industry, d
features, an
mance and
nologies h
most auto
collected f
uation [29
common c
tions, it po
of autonom
driving sy
namic and
include ra
extreme w
intense rain
debris), an
walking pe
existing da
edge-case
the system

∗Haipeng
zeng

chenshw39@mai

Zhang); sundo
Wang); zengh

ORCID(s

rove-
y the
cases
odel

tially
real-
us on
, 41],

eather
e and
et.
f au-
tasets
world
tasets
world
r the
often

esting
ge of
ondi-
lation
real-
been

asets,
s, and
eflect
lation
n vir-
ment.

Yuanzhi Ze

Manuscript Click here to view linked References
Jo
ur

na
l P

re
-p

ro
of

Towards Human-Controllable Image Generation in
omous Driving
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A B S T R A C T
The rapid advancement of autonomous driving technology has reshaped the automotive in
highlighting the need for diverse and high-quality image data. Existing image datasets for t
and improving autonomous driving technologies lack rare scenarios like extreme weather, l
the effectiveness and reliability of autonomous driving technologies. One possible way of exp
the dataset coverage is to augment the existing dataset with artificial ones, which, howev
suffers from various challenges like limited controllability and unclear corner case boun
To address these challenges, we design and develop an interactive visual analysis system,
to achieve efficient and semi-automatic controllable image generation. HuGe incorporates w
transformation models and a novel semi-automatic knowledge-based controllable object in
method which leverages the controllability of convex optimization and the variability of d
models. We formulate the design requirements, propose an effective framework, and desi
coordinated views to support controllable image generation, multidimensional dataset analy
evaluation of the generated samples. Two case studies, a metric-based evaluation and inte
with domain experts demonstrate the practicality and effectiveness of HuGe in controllable
generation for autonomous driving.

duction
nt years, the rapid evolution of autonomous driv-
logy has significantly influenced the automotive
riving advancements in vehicle automation, safety
d intelligent transportation systems. The perfor-
reliability of current autonomous driving tech-

ighly depend on the training datasets. Currently,
nomous driving systems primarily utilize data
rom daily driving scenarios for training and eval-
, 35]. While the lack of sufficient diversity is a
hallenge across various computer vision applica-
ses unique and critical challenges in the context
ous driving [51, 9, 15]. Specifically, autonomous

stems must be capable of navigating highly dy-
unpredictable real-world environments, which

re but potentially hazardous scenarios such as
eather conditions (e.g., heavy snow, dense fog, or
), unexpected road obstacles (e.g., fallen trees or

d unusual behaviors of other road users (e.g., jay-
destrians or animals crossing the road). However,
tasets often lack sufficient representation of these
scenarios, which can significantly compromise
’s ability to generalize and perform safely under

Zeng
yzh25@mail2.sysu.edu.cn (Y. Zeng);
l2.sysu.edu.cn (S. Chen); zhangyt85@mail2.sysu.edu.cn (Y.
ngcandy@gmail.com (D. Sun); yong-wang@ntu.edu.sg (Y.
p5@mail.sysu.edu.cn (H. Zeng)
): 0000-0002-0339-0361 (H. Zeng)

such conditions [34]. In other words, the further imp
ment of model performance is greatly constrained b
data distribution of corner cases. When these corner
occur, they can lead to inaccurate predictions by the m
integrated into the autonomous driving systems, poten
compromising the system’s safety and reliability in
world scenarios. Although some studies specifically foc
extreme weather datasets for autonomous driving [25
featuring a variety of characteristics for different w
conditions, they still lack effective methods to analyz
address imbalances in certain dimensions of the datas

Therefore, to enhance the safety and reliability o
tonomous vehicles, it is crucial to ensure that the da
can cover as many scenarios a driver can face in real-
situations as possible.

Expanding the coverage of special scenarios in da
commonly involves gathering more data from the real-
and generating data for specific scenarios [43]. Fo
former, collecting datasets for autonomous driving
requires road testing [51], which, however, road t
is often expensive and difficult to cover a wide ran
driving scenarios, such as various weather and road c
tions. Additionally, some research uses driving simu
software to obtain virtual image samples that mimic
world scenarios [32]. While these simulated data have
shown in some studies to supplement relevant dat
there are concerns about the fidelity of the simulation
whether these simulated driving scenarios can truly r
real-world conditions [28]. The gap between simu
and reality underscores the limitations of relying o
tual environments for comprehensive dataset enhance

Therefore, it is necessary to develop methods for generating

ng et al.: Preprint submitted to Elsevier Page 1 of 16
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uGe supports the generation of image samples for autonomous driving: The data view (A) shows an overv
including the number of objects, the spatial distribution of objects and the distribution of different dimensions
el (B) allows users to set the option of the generation process and generate new samples. The sample view (C) pr
tion of the dataset with more details. The evaluation view (D) shows the generated results, where users can ev
re different generated samples.

ata based on real images, introducing additional
e factors. On the one hand, real-world image
emselves contain a wealth of information about
scenarios, aiding in training autonomous driving
better understand and adapt to the complexity
ictability of the real world. On the other hand,
ng controllable factors into existing image data
lopers design specific scene images they need at a
er, it is not easy to generate artificial data based
ges. Based on surveys of past research and expert
we have identified three key challenges: (1)

ntrollability. The current methods for generating
ples offer limited controllability, particularly in
y to customize image attributes across multiple
ch as lighting conditions, object positions and
riations. This limitation highlights the absence of
ramework—a comprehensive system capable of
these diverse aspects into a cohesive generation
ch a framework would enable users to specify and
ltiple attributes simultaneously, ensuring that the

generated images align more closely with specific re
ments. (2) Unclear boundary of corner cases. Althou
isting studies have categorized corner cases for autono
driving into different levels, they have not clearly define
analyzed the boundaries of these corner cases, which h
the generation of corner cases. (3) Complex distribut
the dataset. It is hard to know in which direction shou
generate new images and how the generated images c
the distribution, as well as whether they make up f
missing corner cases in the original dataset.

To address the aforementioned challenges, we des
and developed HuGe (Fig. 1), an interactive visual
ysis system tailored for the artificial generation of
samples for autonomous driving. Over approximatel
months, we engaged in close collaboration with expe
autonomous driving to define the system’s design re
ments and ensure its alignment with real-world appli
needs. Based on the derived tasks, a complete pipelin
four coordinated views are designed to support contro
image generation. To improve the controllability of art
image generation, we identify a series of controllable f
(e.g., weather, illumination, object positioning, and d
of occlusion), and design a highly efficient, semi-autom
ng et al.: Preprint submitted to Elsevier Page 2 of 16
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llable sample generation method. This method
hybrid methodology that integrates convex opti-
d Conditional Variational Autoencoders (CVAE)
candidate locations for obstacles while leverag-
sion model to generate the obstacles in located
o explore the boundary of corner cases, HuGe
s to adjust parameters of controllable factors and
fferent images. Further, to easily explore the com-
e of the dataset, HuGe supports multidimensional
d mining of datasets, as well as evaluation of the
samples visually. We demonstrate the effective-
method through two case studies covering object

nd weather condition adjustment, a metric-based
as well as interviews with domain experts. In

the primary contributions of this paper are:
evelop HuGe, an interactive visual analytics sys-

for controllable image generation and exploration
tonomous driving scenarios. HuGe supports mul-
ensional analysis, dataset mining, and evaluation
nerated samples.
rovide an effective paradigm for controllable im-

generation that considers weather transformation
object insertion, making it work for a variety of
ng scenarios.
ntroduce a semi-automatic knowledge-based ob-
insertion method that combines traditional al-
hms with generative models, allowing users to
iently expand dataset coverage based on specific
s..
onduct two case studies, a metric-based evalua-
and interviews with domain experts, providing

prehensive evidence of the usefulness and effec-
ess of HuGe for controllable image generation in

nomous driving.

ed Work
ection presents studies related to our research
tegories, namely, autonomous driving scenario
ration, controllable generation, and visualization
of image datasets.

nomous driving scenario image
ration
the difficulty in acquiring real autonomous driv-
io data, many researchers have turned to artifi-
rating data to synthesize new datasets [50, 53,
me researchers use simulation data [2, 47], but

oduced by simulation platforms often lack reality
endent on the scenario designer’s understanding
ironment. In contrast, datasets generated from
ted in real scenarios exhibit greater diversity and
[28, 8], which aids in training models to better

and handle a variety of different situations and

application scenarios, it is closely related to actual pro
and applications. This enhances the practicality of the
making models trained from the dataset more adapta
real-world conditions.

In the context of autonomous driving scenario im
common generation methods include adversarial a
based methods and knowledge-based methods. Fo
versarial attack-based methods, some researchers
specifically modified black dots, rectangles, or nois
42, 48] to create adversarial attacks aimed at ident
and generating risky scenarios, but such adversarially
ified data are almost impossible to exist in reality.
the advent and development of generative models,
studies utilized these models for transformations th
more aligned with real-world scenarios. For instance,
studies [53, 36, 45] used GANs to generate driving
data under various adverse weather conditions. Liu et a
simulated natural raindrops to perform adversarial attac
traffic sign detection. However, these methods are li
as they only consider changes in dimensions of w
or illumination. In our work, we consider transform
across multiple dimensions including weather, illumin
object positioning, and degree of occlusion.

In knowledge-based methods, generation is prim
driven by incorporating expert experience or integratin
ternal knowledge. For instance, Xu et al. [50] utilized G
to generate day-night images and sharp cut-in scen
Deng et al. [11] generated various driving scene tests
different conditions based on human-written rules.
these methods have expanded the range of testable d
conditions and improved scenario coverage, they still e
limitations in generating more complex, real-world d
scenarios that encompass unpredictable and highly dy
elements.

Our method integrates convex optimization with C
model [42], enabling automatic identification of app
ate locations for placing objects. Additionally, give
strengths and limitations of diffusion models, we emp
hybrid approach that combines diffusion models with
based methods for open-set generation. This allows us
quickly generate batches of realistic and complex sc
catering to a broader range of scenarios than prev
possible with traditional methods.
2.2. Controllable generation

In the fields of Natural Language Processing (NLP
Computer Vision (CV), controllable generation is a p
research topic aimed at precisely manipulating the out
generative models. This concept focuses on generatin
that meets specific requirements or follows predefined
ing conditions, such as text [21], images [27], or videos
There are various methods to achieve controllable ge
tion, mainly categorized into three types: quantitative
trol, qualitative control, and positional control.

In terms of quantitative control, methods like
flow [1] utilize sliders to precisely adjust specific attr
such as age or gender. For qualitative control, model
Since the dataset is directly sourced from practical

ng et al.: Preprint submitted to Elsevier Page 3 of 16
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DALL-E-2 [39] allow users to guide the im-
tion process by inputting text. In the context of
control for autonomous driving, GAIA-1 [19]
ideos by taking input in the form of actions, text,
Another example is from a study [11], where

ustomize traffic rules to control image generation.
itional control, ControlNet [52] guides the image
process of stable diffusion by using additional

n such as depth maps or keypoints. Addition-
AN and pix2pix [22, 31] allow adjustments to
images by manipulating masks, though in some
e adjustments may still require user intervention
on the complexity of the desired modifications.
her streamline this process and minimize manual
n significant modifications to image datasets are

e propose an alternative approach. Instead of
sers to modify individual images, our method

ers to visualize the dataset distribution and select
interest through bounding boxes. This approach
efficient way to modify the dataset, saving time

ng human effort.
alization exploration of image datasets
nt years, many research organizations have con-
arge number of representative large-scale datasets,
significantly propelled breakthroughs in artificial

e across multiple research fields. However, with
ous expansion of these datasets, traditional man-

ation and evaluation methods have increasingly
eir limitations in terms of time consumption

iency. Consequently, many researchers have con-
sual analysis systems from a human-computer
perspective. They utilize visualization tools to

age datasets, aiming to understand these complex
cale data collections.
t al. [7] developed a general model evaluation
licable to major tasks in the field of computer

ploying a variety of visualization methods such
table, and grid. This system can identify issues
odel evaluation in individual image samples.
the problem that common methods for exploring

e not applicable to large-scale datasets, Bertucci
utilized treemap for visualizing large-scale im-
ts. They employed hierarchical cluster structures
multi-level exploration of image datasets. Gou
combined disentangled representation learning
tic adversarial learning techniques to develop
visualization system that assists in evaluating

standing the effectiveness of Traffic Light De-
image datasets. Similarly, Wang et al. [46] in-
RAVA, representing image datasets as a set of

tiples and using a concept-driven approach to
better analyze and resolve mismatches in the

ing of concepts between humans and models in
d representation learning. Xie et al. [49] utilized

nal neural network (CNN) methods to generate

descriptive captions for images, enabling multi-sca
ploration and analysis of large image collections. An
study [6] generated adversarial examples for each im
the dataset and proposed a visual analysis method to int
the reasons for the misclassification of adversarial exa
through multi-level visualizations. In addition, in the co
of the driving domain, AutoVis [23] addressed thi
by combining a non-immersive desktop interface w
virtual reality view, enabling mixed-immersive analy
Automotive User Interfaces.

In addition to analyzing existing image datasets, e
ration of generated images has also been a focus. Fe
al. [13] jointly embedded the results of images gen
by text-to-image generation models and the recomm
keywords, supporting personalized exploration by
Compared to previous works on image dataset explor
our approach further considers the systematic generatio
evaluation of image datasets through interactive explor
This method is user-oriented and leverages original, re
age datasets as a foundation to generate outcomes antic
by the users.

3. Observational Study
In this section, we summarize the experts’ conven

practices and the bottleneck of creating autonomous d
image datasets, and further distill their needs and ex
tions.
3.1. Experts’ Conventional Practice and

Bottleneck
We collaborate with four domain experts in th

tonomous driving field. They include three seasoned
fessionals from the automotive industry (E1, E2, E3
a researcher specializing in autonomous driving algo
design (E4). E1 (male, age: 30) and E2 (male, age: 2
experts in 2D/3D visual perception for autonomous dr
E3 (male, age: 29) is an expert in driving weather simul
and E4 (male, age: 34) focuses on image generation fo
augmentation through algorithm design. Each memb
this group has dedicated over four years to their speci
fields.

Through discussions and research with experts,
been confirmed that the mainstream methods for cr
autonomous driving image datasets primarily involv
collection of real-world driving data. This process i
marily executed through field-based data gathering, wh
vehicles equipped with various sensors navigate th
diverse driving environments to capture a wide range o
ing scenarios. This raw data collection is then exten
supplemented by manual labeling processes, carried o
human annotators. These annotators identify and tag v
elements within the images, such as vehicles, persons
signs, and lane markings, to create a richly annotated d
that is crucial for the training and validation of autono
driving systems. This manual annotation is a labor-inte
ng et al.: Preprint submitted to Elsevier Page 4 of 16
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he pipeline of HuGe: in the back-end generation engine, three main modules are applied for weather transform
tion, and weather condition recognition; in the front-end visualization, four coordinated views are designed for
, generation, and evaluation.

onsuming task, requiring a high degree of preci-
ure the accuracy and reliability of the dataset. Ad-
for the acquisition of particularly uncommon in-
perts need to proactively create specific scenarios,
liberately placing particular obstacles on a road.
hese approaches can supplement some datasets,
perts all agree that conventional practices often
enges in terms of controllability and incurring
bor costs. Within the ambit of data acquisition,
ts encounter the following challenges. A primary
the intensive labor and significant time invest-
nded by the manual annotation process, which
e most resource-consuming aspect of compiling

he emergence of data generation technologies that
nclude annotations presents a promising avenue
ntly reduce these resource expenditures. Further-
ata collection phase, although seemingly straight-
ften requires experts to comb through extensive
non-relevant data to identify the precise datasets
is highlights an urgent need for improved control
s in the data acquisition process to streamline
data collection more effectively. Additionally,

t attention to the utilization of laboratory-based
ulations for generating data on uncommon sce-
re experts need to carefully design and set up con-
ironments through manual intervention in real-
ratory. While this method is effective in capturing
, its implementation requires high costs, further
g the need for cost-efficient solutions.
rts’ Needs and Expectations

ure the alignment of our approach with the over-
ks and requirements within the field, we further
interviews with experts (E1-E4). These inter-

ed to pinpoint their primary concerns regarding
ment of controllable image generation. Through
e design process and our interactions with the
distilled the following design requirements.

ovide an overview of the selected image dataset.
rtant to obtain a comprehensive assessment of
from a holistic perspective, which can provide

what categories are in the dataset, what kinds of sampl
dominant, and if lack of some important samples. E
mentioned that this information can provide guidan
exploring possible corner cases and generating contro
corner cases.

R.2 Explore possible corner cases in the image da
Corner cases are generally dangerous and novel, diffic
judge by a single indicator, and it is challenging to effec
classify corner cases from a data set. Experts seek int
and rapid identification of potential corner cases th
visualizations that aid in analysis and evaluation. Ther
there is a need for visualization and interaction design t
users efficiently identify potential corner cases.

R.3 Generate controllable corner cases based o
image dataset. In addition to the corner cases inher
the dataset itself, some corner cases may arise in sa
not covered by the dataset, such as those involving
or foggy conditions. Furthermore, existing datasets c
encompass all possible road conditions. To address
issues, experts hope that our system can offer an in
tive, human-controllable sample generation technique
system would be capable of generating samples in
according to specified requirements, thereby expandin
sparse areas of the dataset.

R.4 Evaluate and compare generated image sam
The samples generated may exhibit certain issues, ne
tating a further assessment of their quality with the exp
of professionals. Moreover, experts are required to com
the outcomes of images generated through various hu
controlled parameters to ascertain which parameters
superior results. The system needs to incorporate co
ative views, enabling experts to inspect and evalua
generated samples, thereby ensuring the quality and
cability of these samples.

4. Approach Overview
We propose HuGe, an interactive visual analytics s

for generating controllable images based on the pro
generation method that combines traditional optimi
algorithms and generative models. Fig. 2 shows the pi
to the dataset. For example, the distribution of of HuGe, which consists of a back-end generation engine and
ng et al.: Preprint submitted to Elsevier Page 5 of 16
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CycleGANHiDT

he example effect of changing the weather condi-
horizontal axis represents different types of weather
mely illumination, fog, and rain, while the vertical
es their increasing intensity.

visualization. In the backend generation engine,
ral modules are implemented: weather transfor-
ject insertion, and weather condition recognition.
er transformation module facilitates meticulous
on of weather parameters such as rainfall inten-
ensity, and illumination, affording users precise
r environmental elements. The object insertion
powers users to seamlessly integrate diverse ob-
curated selection of images, enhancing the versa-
ustomization of generated content. Furthermore,
ndition recognition is designed to identify and
e severity of weather conditions, enabling users
ages from the original dataset that match their
terms of weather intensity. In the front-end

n, four coordinated views are designed for im-
ation, generation, and evaluation. To be specific,
ew (Fig. 1A) gives an overview of the selected
is high-level summary allows users to quickly
composition and characteristics of the dataset

ceeding to more granular exploration (R.1). The
el (Fig. 1B) allows users to conduct fine-grained,
control over a multitude of factors, including

ironmental conditions and granular object-level
R.3). The sample view (Fig. 1C) enables users to
distribution of the selected data in greater granu-
s two user-specified attributes, which provides in-
ration of possible corner cases (R.2). The evalua-

Fig. 1D) performs a comprehensive evaluation of
ic outputs, analyzing at both the aggregate dataset
ell as the granular instance level, which shows
metrics across four widely adopted indexes and
parisons between the original seed images and

sponding synthetic counterparts (R.4).

end Engine
section, we describe the methods and mod-

d for weather transformation, knowledge-based

controllable object insertion, and intensity recognitio
weather conditions in the back-end engine.
5.1. Weather Transformation

When modifying image environments, domain e
often prioritize illumination, fog, and rain as key f
due to their frequent occurrence and significant impa
driving conditions [36]. Therefore, our focus in this
is on transformations related to these factors (R.3), w
considering conditions such as snow and hail, as they
sent a practical starting point for addressing environm
variability in autonomous driving scenarios. The ex
effect of changing the weather conditions is shown in F

For illumination transformation, we adopt the
resolution daytime translation model (HiDT) [3]
can produce high-resolution images with variations
lumination. Using HiDT, we achieve realistic illumin
modifications across various images.

For fog transformation, we adopt CycleGAN [5
prototypical Conditional Generative Adversarial Ne
(CGAN), which can provide precise control over the g
ative process. It requires solely input images and asso
degrees of fog, to generate the synthesis of authentic
imagery.

For rain transformation, unlike illumination and
there is a scarcity of annotated datasets specifying rain
sity, complicating the use of generative models like GA
controlled rain generation. MagicDrive [14] effectively
erates realistic rain effects, yet its approach, while rend
accurate rain patterns, often alters the quantity, positio
color of objects in the image. Additionally, control ove
intensity is achieved only qualitatively through verbal
lacking the desired quantitative precision. In our stu
maintain object characteristics in driving scenes and ac
precise control over rain intensity, we adopted the app
proposed in [45] for rain generation. This method ca
duce varying degrees of realistic rain images.
5.2. Knowledge-based Controllable Object

Insertion
As shown in Fig. 4, we utilize optimization algor

and diffusion models to controllably add objects to im
based on users’ expectations. Specifically, we emp
conditional variational autoencoder (CVAE) [42] to d
candidate boxes. These boxes are then optimized th
an iterative process that incorporates predefined rules—
as aspect ratio, size limits, and alignment with the
surface—and user-specified adjustments, such as mod
the position, depth, or occlusion percentage. This
tive optimization refines the bounding boxes to mee
the constraints and user-defined preferences, providing
grained control over various aspects of the generated b
Afterward, we employ a diffusion model, the GLIGEN
model, to introduce user-specified objects into the or
image.
ng et al.: Preprint submitted to Elsevier Page 6 of 16
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Original image

Tokens
ZoeDepth

ataset

he workflow of the knowledge-based controllable object insertion: the CVAE model is first used to derive can
mizing them based on predefined rules and user adjustments; given the candidate boxes, the GLIGEN model i
introduce user-specified objects into the original image.

, similar to the approach proposed in [18], we
CVAE model to extract latent features and gener-
te obstacle positions through context-aware spa-
ntation learning. The resultant bounding boxes

tely linked to the semantic information of the
suring a more coherent fit with image semantics
to the generation of arbitrary positions. However,
t relying solely on semantic segmentation maps
pth information can lead to unreasonable occlu-
when adding obstacles based on the sampled

ors, e.g., an object that should be occluded ap-
ont of the occluding object. In addition, the box
rated by this method may not match the actual
s, and it cannot generate novel unseen objects.
re, the physical meanings represented by certain
r dimensions are rather difficult to comprehend,
the desired controllable generation.
ress the issues of occlusion order and object

ncorporate depth information into the context-
ial representation learning framework. As shown
is methodology utilizes a depth estimation model,
ZoeDepth model [5], which has been fine-tuned

TI [33]—an authoritative dataset in autonomous
search—to extract and integrate relative depth
raging foundational principles of imaging and
geometry, assuming no lens distortion and the
ht and width of an object are (ℎ𝑜, 𝑤𝑜), its distance
amera is 𝑑, then its height and width (ℎ𝑖, 𝑤𝑖) in
relate to 𝑑 by ℎ𝑖 = 𝑓×ℎ𝑜

𝑑 ;𝑤𝑖 = 𝑓×𝑤𝑜
𝑑 . Here 𝑓

l length. Hence the area 𝑆𝑖 of the object box in
and its physical area 𝑆𝑜 satisfy 𝑆𝑖 = 𝑓2

𝑑2 𝑆𝑜. It
t the object dimensions in the image are inversely
al to the square of depth. For objects in the orig-
t, we can estimate their real size distribution by
g statistics of the product of their width, height,
Therefore, given the average depth of the box

can compute the distribution of (ℎ𝑖, 𝑤𝑖) and filter
onable candidates accordingly. For new objects
dataset, users can define their aspect ratio relative
nce object to obtain the size distribution. This
ensuring plausible occlusion orders and object

the candidate bounding box with that of intersecting ob
constraining that the depth of the occluding object’s b
edge is not less than that of the occluded object’s b
edge. This ensures that the bounding box is posit
correctly in space.

Furthermore, acknowledging the inherent characte
of obstacles and common scenarios, we impose const
on the aspect ratio of obstacles and constraints related
road surface. Users have the flexibility to add constrai
the candidate bounding box based on their specific re
ments, such as constraints on the percentage of occl
position, or depth. For instance, in the scene show
Fig. 4, the straw was assigned a greater depth value
placed farther away) than the car based on the esti
depth map. The optimized bounding box reflects this sp
depth requirement while preserving the object’s natu
lationship with the road surface. Considering the non-
and constraint-heavy nature of the optimization pro
we adopt the COBYLA optimization algorithm [38] d
its ability to handle non-linear constraints effectivel
its balance between performance and runtime efficie
To streamline the optimization process, we define a
simple and easily satisfiable constraints, including a
ratio and size, as the foundational constraints. It is man
that the generated bounding box must adhere to these
constraints before initiating the optimization algorith
resolution. This strategic approach serves to mitiga
complexity of optimization and enhances the feasibil
achieving satisfactory results.

Finally, we adopt the GLIGEN [30] model as the
eration backbone, due to its strong zero-shot capabilit
its flexible design for incorporating multiple conditi
inputs. In our study, we specifically utilize GLIGEN
painting mode, which not only preserves the surrou
context but also allows the model to naturally reason
spatial coherence, lighting, and texture consistency.
lustrated in Fig. 4, the model synthesizes the final com
image based on the given bounding box, object categor
original image, along with optional inputs such as t
descriptions and reference images.
ilarly, for occlusions, we compare the depth of

ng et al.: Preprint submitted to Elsevier Page 7 of 16
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sity Recognition for Weather Conditions
izing the intensity of different weather conditions
images could provide information for exploring
ring the original image dataset and the generated
set. Given that prevailing autonomous driving
pically annotate weather types but lack detailed
n on the intensity, we conduct training on the

of rain, fog, and illumination. To ensure consis-
een the model’s results in intensity recognition
nerated intensity scale, we apply the control-

her generation models mentioned in Section 5.1
m images in the dataset. Using the controllable
neration models’ output conditions as labels, we
y constructed a dataset containing 59,500 images
ation on the intensity of rain, fog, and illumi-

ed on the trainset of Cityscapes. Building upon
t, we train three ResNet [17] models specifically
o the task of rain, fog, and illumination intensity
on. Then, we evaluate the performance of the
et models, and their mean squared errors on
are consistently within 0.05, which can provide
results for the following tasks.

-end Visualization
ign and implement a visual analytics system to
nerate, and evaluate image samples, as shown
he system consists of four views: the data view,
panel, the sample view, and the evaluation view.
View
ta view (Fig. 1A) contains four components,

widgets for configuring datasets (Fig. 1A1), a
chart showing the number of objects (Fig. 1A2), a
owing the spatial distribution of objects (Fig. 1A3),
r chart with violin plots showing the distribu-
erent dimensions (Fig. 1A4), which provides an
f the selected dataset. After users select a dataset,
onding information will be updated. Users can
ific scene within the dataset to conduct in-depth

analysis on the selected scenario. To provide
n about what objects are in the image dataset, the
r chart (Fig. 1A2) is used to display the count of
bjects. In this chart, green color represents the
age data, while the orange color represents the

image data. Given the significant differences in
y of various objects (for instance, the number of
uch less than that of cars), a logarithmic function
adjust the scale of the y-axis. Furthermore, a
used to display the depth and position of different

the selected dataset (Fig. 1A3). The x and y axes
tmap correspond to the width and height of the
ples, respectively, where redder areas indicate
ct overlap rates in those regions. Lastly, a radar
violin plots (Fig. 1A4) is integrated to perform
nalysis across multiple dimensions of the overall
set, including the number of objects, the depth of

（a） （b） （c） （d）

Original ima

Generated im

Figure 5: Current design of the sample view. (a) Divide sa
into different grids and count the number of samples in
grid to draw the heatmap matrix. (b) Select samples in a
of interest. (c) Hover to check selected samples. (d) The
of the corresponding samples will be displayed in Fig. 1

the images, like rain, illumination, and fog. The sector p
the middle shows the KL divergence value between th
tribution of each dimension and uniform distribution.
calculating KL values, then a normalization is perfo
Large areas indicate a larger uneven distribution.
6.2. Control Panel

To provide human-controllable and quantifiable se
in the generation process, we designed the control
(Fig. 1B), which contains two main functional module
for adjusting weather conditions (Fig. 1B1) and the oth
adding new objects (Fig. 1B2).

To start the generation process, first, users are req
to select a group of samples and decide how many
samples need to be generated in the sample view (Fig
For adjusting the environment, users can adjust the fog
and illumination (“Illum”) levels of the dataset in Fig
ranging from 0 to 1. For adding new objects, users can
different objects, including cars, trucks, persons, and
Users can then adjust the distance (“Depth”) and occ
of the objects (“Occlusion”) in Fig. 1B2. To allow
objects to appear in a certain area, users can select the a
interest in Fig. 1A3. Finally, users can click the “Gene
button to generate a new batch of samples.
6.3. Sample View

The sample view (Fig. 1C) is the primary view for
to explore the image collection. It aims to assist us
exploring the distribution of the data set along certa
mensions with more details. Users can select two dimen
as the x-axis and the y-axis correspondingly in Fig. 1C
heatmap matrix in the middle (Fig. 1C2) demonstrat
distribution of the dataset in two selected dimension
each grid of the heatmap matrix contains image sam
The histograms along the two axes (Fig. 1C3) displa
distribution of the dataset in one dimension. Users a
lowed to select data samples in the heatmap matrix to f
explore the distribution of samples. Considering th
user’s primary intention is to fill in sparse or missing
using the original dataset, our design focuses on showi
distribution of both the existing and generated images
than just the generated images. When users comple
selection, the data samples will be highlighted, and a
up window will display a sample scatter plot (Fig. 1C4
e degree of occlusion, and weather conditions in x-axis and y-axis of the scatter plot are consistent with two
ng et al.: Preprint submitted to Elsevier Page 8 of 16
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oflternative designs for the sample view. (a) Display a

ed scatter plot with DBSCAN clusters, using color
iate clusters. Zooming in reveals details via (b) a
, detailing a point’s metrics across six dimensions,
ndicating cluster membership; or (c) a glyph, using
to represent dimensional information, with the

ght representing relative quantity.

s selected by users, with the range of the two axes
he selected area. The green dots mean samples
riginal dataset, while the yellow dots indicate

samples. As shown in Fig. 5c, users can hover
nd the image of the samples will be displayed
. After generating the image samples, each cor-
grid in the heatmap matrix will be divided into

es (Fig. 1C6). The left-bottom part represents the
age data in that area, while the right-top part
istribution of original image data combined with
enerated images.
ative design. During the iterative development
e explored two alternative designs for the sample
ally, we intended to use scatter plots to display
n across all six dimensions. To achieve this, we
d PCA to reduce the dimensionality of the data
imensional plane, followed by clustering using
AN algorithm. In the scatter plots, the x and y
ent the two dimensions obtained through PCA,
colors indicating cluster categories, as shown
To present detailed information on the six di-

we designed an approach where points would
into radar charts or glyphs upon zooming in, as
in Fig. 6b&𝑐. In the radar chart (Fig. 6b), the
rrespond to the relative information on the six

s, with color representing the cluster category. In
representation (Fig. 6c), six sectors each repre-
ension, where the sector’s height indicates the
ormation level. However, due to large number of
ere was significant overlap between glyphs and
ts, making data unclear. Additionally, the PCA-
roach reduced dimensionality but obscured criti-
eeded for setting specific parameters. Ultimately,
adopt this design option.
uation View
aluation view (Fig. 1D) is designed for analyzing

two parts, a radar chart showing four evaluation m
(Fig. 1D1) and an image list comparing generation r
(Fig. 1D2).

Firstly, for the batch of image samples, we hav
lected four evaluation metrics: Fréchet Inception Dis
(“FID”), Inception Score (“IS”), Precision, and Recal
focuses on the overall similarity between generate
real images, while IS evaluates the quality and divers
individual images. A lower FID score indicates higher
quality and realism, whereas a higher IS score sug
good quality and diversity. Both metrics are often
together to assess the performance of generative m
Additionally, we adopt the improved precision and
metric [26], where precision gauges how closely gen
images resemble real data, and recall measures the div
of generated images in capturing the real data distrib
Specifically, in the context of generative models, the
pretation of precision and recall changes. Precision mea
the proportion of generated images that are “realistic”
is, those that closely mimic the real data distributi
high precision implies that the majority of images g
ated by the model are indistinguishable from those
actual dataset. As for recall, it assesses the diversity
generated images, or in other words, the extent to
the model captures the real data distribution. A high
indicates that the model can generate a broad range of im
that convincingly resemble those from the real datas
summary, an ideal image generation model should po
low FID, high IS, high Precision, and high Recall s
indicating the model’s capability to generate images th
both realistic and diverse in high quality. We present
four metrics in the form of radar chart and normalize
to the same scale in Fig. 1D1. It is important to not
only the FID metric is better when lower, while metric
IS are better when higher. Therefore, for FID, we u
reciprocal form, i.e., 1/FID. To showcase real image
compare them before and after generation, we prese
batch of image samples as an image list. Additional
visualize the selectable sort values from the dropdown
as green bars. For example, in Fig. 1D2, the length of
bars indicates the depth of the cars. Users can select diff
dimensions for sorting and comparing the effects of im
before and after generation side by side, which can pr
intuitive guidance for the subsequent image generation

7. Evaluation
We conducted two case studies, a metric-based

aiton and interviews with E1-E6 to demonstrate the
tiveness and usability of our system. The background o
E4 has been introduced in Section 3.1. E5 (female, ag
and E6 (male, age 29) are newly invited experts who
a strong expertise in visual perception for autonomous
ing. Section 7.1 and Section 7.2 present the cases cond
by E1 and E3 respectively. Section 7.3 presents a m
based evaluation of our method’s impact on improvin
ring the generation results, which consists of

ng et al.: Preprint submitted to Elsevier Page 9 of 16
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(a) (b)

depth” heatmap “position” heatmap

a) shows car distribution in the “depth” heatmap,
shifts focus to the “position” heatmap for car
The manually selected range is highlighted in blue.

odel’s performance. Section 7.4 presents the
om all experts.
I: Controllable insertion of cars and

ons
ses on improving object detection in autonomous
often needs to test models on different scenarios,
those involving potential hazards. In this case,

ike to explore the original dataset and generate
es that may present higher risks for testing. More-
lieved that acquiring images of target objects at
pths and positions in real-life conditions presents
challenges. Consequently, he aspires to freely
images in these aspects for more comprehensive
t first, E1 selected the Cityscapes dataset [9], a
d object detection dataset, for preliminary explo-
s dataset, consisting of densely pixel-annotated
scapes across 19 categories, captures street scenes
. As shown in the bar chart (Fig. 1A2), he noticed
person” were the two most abundant categories.
are crucial recognition targets in autonomous

narios, hence they were selected as subjects of
hen clicking on the bar corresponding to “car”,
e color of center area in the “depth” heatmap was
other areas (Fig. 7a), which indicated “car” in

was far away. Also, switching to the “position”
e found the color of center area was lighter
areas (Fig. 7b), which indicated most cars were
along the roadsides and few cars ahead at close
ensely populated urban areas, close proximity of
mon and poses a high risk. Therefore, E1 selected
ing a blue rectangle (Fig. 7b) and decided to add

area to simulate high-density urban traffic and
taset shortcomings. Then, to select base images
image generation, he turned to the radar chart

for analyzing different dimensions. To insert cars,
greater emphasis on dimensions more pertinent
tion of cars and persons, rather than on weather-
ects. He noticed significant KL divergence in the

ension but less so in depth. Hence, he selected
as the x-axis and “depth” as the y-axis, the distri-
e original image dataset was shown in the sample
1C). Considering image generation with less

he decided to select images with less number
epth of cars as the base images, as shown in the
the red box in Fig. 1C . Further, in the control

(a) (c)

car
people

with

(b)

with

Figure 8: Adding “person” additionally to images that a
have cars inserted. (a) the generated image after adding
based on the original sample image from Cityscapes. (
position distribution of persons, where we first select th
on the left and then proceed to add “person”. (c) the gen
image after adding “person” again.

panel (Fig. 1B), he entered the prompt word “car” and
ually adjusted the depth, choosing distances of [1,3],
[3,5] as parameters for three rounds of generation. Th
eration multiplier was set to the default 1X. After pre
the generate button, desired images are generated. The
automatic bounding box generation process exhibit
average computational time of about 0.8 seconds per i
demonstrating an acceptable performance in augmenti
dataset. Taking the distance range of [1, 3] as an exam
the position of the sample (Fig. 1C6), the original rec
has transformed into two triangles, significantly fillin
previously white (data-sparse) area. Additionally, as s
in Fig. 1C3, the newly generated image data appeared
form of small yellow rectangles. Furthermore, E1 com
the original and generated images by clicking on the
generated yellow dots in Fig. 1C4 and the correspo
changes in Fig. 1D2. Upon a meticulous examination
three batches of the generated images, E1 confirme
all synthesized objects adhered to the specified require
and exhibited contextually an appropriate spatial layou
suring the integrity and relevance of the augmented da
After that, E1 moved to the evaluation view (Fig. 1
compare the three batch generated images. The scale o
right axis represented the value of 1/FID. When the
endpoint of the quadrilateral moves further to the
the value of FID is lower, indicating a closer stat
resemblance to real images. Firstly, based on the distrib
of the right vertices of quadrilaterals in Fig. 1D1, the r
of the third batch were closer to the origin, indicatin
the FID value of the third batch was higher than tho
the previous two generations. Secondly, the scale on th
axis represented the value of precision. The higher pre
value suggested that the generated images were clo
quality to real images. The expert believed the gen
objects might have less impact on the overall image be
they are farther away, appear smaller, and occupy
pixels. Thirdly, the IS and Recall values of the three ba
were similar, indicating no significant change in ima
versity. After the comparison, E1 thought the third batc
better quality. Taking everything into account, E1 deci
incorporate the third batch of data into the original da
7
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Ⅱ Rainy Residential Area with a Cow 

G H

I
I1

I3

I5

Ⅲ Result

J

K

B

C

D

 Conditions with Poor Visibility on Highway

F

E3

E1
E2

E

E5

E4

A

I2

I4

enlarge

xperts workflow for controllable generation of corner cases on the BDD100K dataset. (I) Foggy Conditions with
Highway. (II) Rainy Residential Area with a Cow. (III) showcases examples of the final generated images; the

result of process (I), and the lower part is the result of process (II).

ly, E1 would like to generate images with “per-
hen selected “person” as the subject for further
the statistical bar chart (Fig. 1A2). Observing the
ribution heatmap (Fig. 8b), he noted that there was
ncentration of persons on the right side compared
. Consequently, he aimed to add more persons
side of the images. Additionally, he considered
erate dangerous scenario, he selected the first
ages with cars relatively close to the original

. 1C6). By adjusting the slider (Fig. 1B2), he chose
s to add “person”. In the end, he obtained the
ult, as shown in the example in Fig. 8c.
mary, E1 found that the operation workflow of
tuitive and straightforward, enabling the creation
ata that is usually difficult to capture through con-
oad testing with cameras. He stated: “Although
ts in the images might not be completely realistic,
heless contribute to enriching the dataset for
ction model testing. Coupled with visual analysis,
ents a meaningful endeavor.”

II: Controllable generation of corner
s
case, we collaborated with E3 to systematically
e capability of HuGe in generating controlled
s for autonomous driving. His primary focus was
tiveness of HuGe in producing images of extreme
particularly those involving low visibility due to
ther conditions and the presence of uncommon

the road. Drawing from 5 years of weather simula-
ence, E3 identified significant limitations in exist-
mous driving datasets regarding extreme weather
, citing their rarity, unpredictability, and high
costs. Consequently, E3 opted to utilize HuGe for
and adjusting weather conditions in these cor-
cenarios. At first, E3 selected the BDD100K

datasets, as this dataset includes scenes under various
and weather conditions. Then, he noticed that und
highway category, the number of trucks ranked seco
shown in the Fig. 9B. “Trucks are primarily used for
transportation on highways.” he said. He mainly fo
on the weather and considered fog, rain, and illumin
He noticed that in the radar chart (Fig. 9C), the t
the illumination dimension was quite wide, indicatin
most images were in relatively bright environments.
he chose illumination as the Y-axis. Then, since th
divergence of fog was slightly higher than that of rain,
cided to choose fog as the X-axis for exploration. Besid
wanted to generate more images with a small range of
add more possibilities, making the fog dimension smo
and more uniformly distributed. Integrating the inform
observed earlier, he explored and analyzed the dimen
of fog and illumination in the sample view (Fig. 9E)
heatmap distribution and the height of the bars on the
confirmed his analysis (Fig. 9E4). He then selecte
upper-left section (Fig. 9E1), which represented high
with high illumination and low fog, meaning higher vis
(Fig. 9E2). E3 wanted to transform and generate im
with lower visibility (decreasing illumination and incre
fog), targeting the originally vacant bottom-right a
the sample view (Fig. 9E3). Therefore, in the control
(Fig. 9D), he adjusted the fog to [0.05, 0.35] an
illumination to [0.1, 0.5]. Upon completion, the evalu
metrics results were shown in (Fig. 9F). He observe
single batch and noticed that the values of all four m
were not high, which he considered that the domain var
issues introduced by the models generating fog and i
nation were responsible, but the overall generated effe
acceptable. Besides, he observed the part outlined in y
dashed lines in Fig. 9E4, which precisely correspond
the region he intended to supplement. Fig. 9E5 repr
the distribution of image samples across the entire v
1] for exploring weather conditions in image area of the sample view, with the generation range desired
ng et al.: Preprint submitted to Elsevier Page 11 of 16
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ned in a blue dashed line. Eventually, the style of
he generated was shown in Fig. 9J.
sing HuGe to adjust weather conditions and ac-

ng the system’s capability to insert any object, E3
he idea of controllably generating foreign objects
ing weather conditions. According to E3, this

parked by his own experience of encountering a
sidential area while driving, an event he deemed
robable yet verifiably real. This type of scenario,
nusual behaviors of other road users (e.g., ani-

ing the road), is precisely the kind of corner case
hted as crucial in the Introduction section. This

interest in using HuGe to generate similar and
images. First, he selected “Residential” as the

. 9G). Subsequently, in the radar chart (Fig. 9H),
d that “rain” exhibited the highest KL divergence,
the greatest imbalance. Thus, in the sample view,

“Illum” as the x-axis and “Rain” as the y-axis
He selected a batch of images depicting clear
m the bottom right corner as the base (Fig. 9I2).
“cow” in the object bar to specify the object type.

his understanding of the random appearance of
jects, he adjusted the degree of occlusion (“Oc-
n the control panel to not exceed seventy percent

a distance range of [2,4], without specifying
Moreover, aiming to fill the relatively vacant

oving the original region upwards (Fig. 9I3), as
y the rectangular distribution in the sample view,
d “Rain” to [0.2, 0.6]. Next, the yellow dots in
ustrated the distribution of the generated images.
g over the dot with the mouse and clicking to

mage, he observed the enlarged original and gen-
ges on the left side. Fig. 9I5 and Fig. 9E5 convey
anings, with the blue dashed line indicating the
triangles appear in the sample view of Fig. 9I.

tion samples are shown in Fig. 9K.
case, E3 was notably impressed with the capabili-
e for generating conditions of extreme weather or

alistic scenes. E3 successfully identified and filled
ps in extreme weather conditions by analyzing and
ng the BDD100K dataset. He noted: “The coor-
sign of the sample view helps me quickly identify
ensional areas are missing or sparse, and after
, I can see the filled areas.” E3 also enhanced
ty and practicality of the dataset by generating

images, such as scenes of encountering cows
ing in the rain. He thinks that HuGe offers a
e and logically clear interaction experience, with
ented functionalities being quite exciting.

ic-Based Evaluation
luate the efficacy of our generated images in
model performances for specific target scenarios,
ted a metric-based evaluation of our method’s
improving the detection model’s performance.
tion addresses the close-range sample deficiency

in the Cityscapes dataset identified in Section 7.1. By
menting the dataset with our generated images, we aim
improve the overall training performances, as measur
the metric mean Average Precision (mAP).

Training set. The Cityscapes dataset is a widely r
nized benchmark for semantic segmentation in autono
driving scenarios, comprising 19 semantic classes. F
object detection task, we selected 4 categories of
ent sizes of traffic-relevant objects, including cars, pe
bicycles, and trucks—encompassing three different
cle sizes and a category of human. We transforme
segmentation annotations into bounding boxes, effec
converting them into an object detection dataset suitab
our purposes. Therefore, we utilized 2,975 training im
from the Cityscapes dataset as a base training set.

Fintuning set. We meticulously prepared three
tinct finetuning datasets to comprehensively evalua
usability of HuGe generated data: CARLA Dataset,
Dataset and the selected Cityscapes Dataset. For the CA
dataset, we selected 827 images from the CARLA D
tion dataset[10], focusing on close-range vehicular en
ments. These images were strategically extracted to
sent the most proximal range, ensuring relevance to
distance object detection scenarios. The CARLA Det
dataset itself was generated using the CARLA simu
with data collected in autopilot mode across diverse
ronments, including Town01, Town02, Town03, Tow
and Town05. For the HuGe dataset, We generated
synthetic images through the initial process of Sectio
specifically simulating close-range driving scenarios.
meticulously crafted images were derived from our tra
set and served as supplementary fine-tuning data, s
gically designed to enhance the model’s object det
capabilities in near-proximity contexts. Lastly, to ad
potential bias in finetuning result produced by the or
Cityscapes in creating HuGe dataset, we curated the se
Cityscapes Dataset through a refined selection process
involved creating a specialized 827-image subset fro
Cityscapes datasets, deliberately selecting the founda
images used in the initial generation process.

Validation set. We prepared two validation se
evaluation: the Cityscapes validation set and the speci
close-range validation set. The standard Cityscapes v
tion set of 500 images demonstrates model performa
common scenarios, providing a baseline for compa
The close-range validation set, also containing 50
ages, focuses on close-range scenarios to accurately
model performance in scenarios similar to those iden
in Section 7.1. Here, we constructed the specialized
range validation set, which selected 500 images fro
BDD100K validation set that aligned with the conditi
being close and in the center. This approach allowed
more precisely evaluate model performance in the sp
close-range scenarios of interest.

Procedures. Our experimental setup involved
ing two classic and widely used object detection m
YOLOv5 [24] and Faster R-CNN [40]. First, we tr
ng et al.: Preprint submitted to Elsevier Page 12 of 16
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l for 300,000 iterations on the Cityscapes training
e as base models. Then, we employed a transfer
proach, fine-tuning the models (pre-trained on
pes dataset) using each fine-tuning set for 3,000

including the CARLA Dataset, the HuGe Dataset,
lected Cityscapes Dataset. After fine-tuning, we
he base models of Faster R-CNN and YOLOv5
scapes validation set and the close-range valida-
dditionally, we evaluated the fine-tuned models
on the three fine-tuning sets) on the close-range
set.
s. In Table 1, we compared the performance of
NN and YOLOv5 on the original Cityscapes Val-
and the Close-range Validation set. Both Faster

d YOLO is trained only on the Cityscapes training
strated in Table 1, the base models’ detection
n the selected close-range validation set was

ly lower compared to the original Cityscapes vali-
This insight confirmed the performance gap in the
ined on the Cityscapes dataset, particularly when
bjects in close-range scenarios.
her detailed in Table 2, we conducted a compar-
ation of the model performance on close-range
set when finetuned with the CARLA dataset, the
ityscapes datasets and the HuGe dataset on the
e Validation set. For YOLOv5, the highest mAP
e achieved when fine-tuned on the HuGe dataset,
cant gains observed across all object categories.

y, the mean Average Precision (mAP) for car
mproved substantially across both architectures

YOLOv5, the mAP increased from 34.8% to
ilarly, Faster R-CNN exhibited an improvement

to 42.8%. Furthermore, both models showed
le improvements in detecting other object classes,

persons and bicycles.
rast, fine-tuning on the CARLA dataset resulted
dest improvements for YOLOv5 and marginal

r Faster R-CNN, indicating limited generalizabil-
ARLA data to real-world scenarios. The selected
dataset, while offering improvements in certain
showed lower overall performance compared to
ataset. These results underscore the effectiveness
e dataset in bridging the performance gap for the
f objects at close range.
more, an interesting anomaly was observed in
f truck detection using Faster R-CNN, where

ce degraded after finetuned on HuGe, and the best
ce was achieved when finetuned on the selected

dataset. We hypothesize that this discrepancy
ibuted to the limited number of truck instances in
and the structural differences between YOLOv5
R-CNN, leading to increased variability in the

ce of Faster R-CNN on this class. YOLOv5’s grid-
-stage detection is more resilient to sparse data,
er R-CNN’s two-stage mechanism may struggle
anced classes, making its truck detection perfor-
table.

Table 1
Performance Comparision of Base Models on Different V
tion Set

Model
Validation

Set car person bicycle

YOLOv5(base) Cityscapes 70.5 46.7 34.7
Close-range 34.8 18.1 11.3

Faster R-CNN Cityscapes 62.4 43.3 42.6
(base) Close-range 38.4 16.2 32.1

Table 2
Performance Comparision on Close-range Validation
Models Finetuned on Different Fintuning Dataset

Model
Finetune
Dataset car person bicycle

YOLOv5

None(base) 34.8 18.1 11.3
Cityscapes 27.8 20.4 38.1
CARLA 31.5 18.5 12.1
HuGe 53.2 37.5 40.5

Faster R-CNN

None(base) 38.4 16.2 32.1
Cityscapes 31.3 11.7 26.8
CARLA 27.3 10.0 12.9
HuGe 42.8 27.1 40.0

7.4. Expert Interview
To better evaluate the effectiveness of HuGe, we

ducted individual interviews with experts E1-E6 (their
ground has been introduced at the beginning of Sectio
and Section 7). First, we briefly introduced our system
provided a simple tutorial demonstrating the visual d
and interaction of HuGe. Next, experts could explo
system for about an hour. Then we conducted a half
individual interview with each expert and gathered
valuable feedback.

System Design and Usability. The feedback o
visual analytics system indicated that the system is
to understand” and “simple to operate”. For examp
mentioned that “The histogram and heatmaps allow
quickly grasp the object distribution and identify any
in the dataset at a glance.” Experts found that the s
view effectively showcased the points they wanted to
lyze, revealing uneven distributions of image datasets a
various dimensions. E2 valued the ability of HuGe to
users to select any two dimensions for analysis, obser
distribution of individual image samples within the
dataset, and support effective comparisons. He believe
approach allows for flexibility and focused analysis, a
also mentioned by E1 and E5. Most experts appreciat
interactive functionality of heatmap brushing selectio
dimension analysis. Additionally, E3 and E6 both a
that this system can assist data analysts in explorin
dimensional features of autonomous driving image
uncovering potential issues. For instance, E3 disco
incorrect ground truth annotations for buses in parki
scenes using the object heatmap.

Effectiveness. Experts were generally satisfied wi
overall process and believed that HuGe can signifi
reduce the time and manpower cost for high-quality
ng et al.: Preprint submitted to Elsevier Page 13 of 16
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or generation in the field of autonomous driv-
the generated images can effectively supplement
g dataset to enhance model training. Regarding
different weather conditions, E3 mentioned that
tion method does not require complex historical
vironmental parameters for adjustment, only the

f the corresponding weather needs to be adjusted.
E5 pointed out, “Although the generation speed
fast, it can generate images that are difficult to

real-world scenarios, which can greatly save the
llecting image data for autonomous driving.”
perts provided positive feedback on the system’s
ss, believing that it can enrich the autonomous
age dataset, especially for samples that are dif-
llect in real world.
vement. Experts also offered several suggestions
ing HuGe. Firstly, they hoped the efficiency of im-
tion could be enhanced to improve the timeliness
ng larger-scale image data. Secondly, improving
generation effect with more advanced models.
iting only a part of an image, rather than the

h current technologies (such as GAN models and
odels) can easily result in domain inconsistencies
image, which should be iteratively considered in
k.

ssion and Future Work
ction discusses several issues of HuGe and possi-
ns for future work.
ting reality in generated images. Assessing the

enerated images involves multiple subjective con-
, such as visual fidelity, contextual coherence, and
ction, which lack quantitative metrics. Attaining

eality requires evaluating the model’s capabilities,
ty and quality of datasets, and grasping the nu-
man perception. While FID and IS provide some
f image quality, they don’t capture all dimen-

ality, as seen in Section 7.1 (Fig. 1D1) and Sec-
ig. 9F). These metrics mainly gauge similarity
asets without fully representing image fidelity.
k, the generated objects in images occasionally
tch the actual scene in terms of target scale and
which is an inevitable problem when generating
image datasets. Such imperfections are largely
inherent limitations of current diffusion-based
models, including GLIGEN. Achieving perfect
m, especially under open-world, complex driving

, remains a significant challenge for the field. A
ncy of such distorted images could introduce bias
ining dataset, leading to model overfitting on spe-
tion patterns and subsequent underperformance in
scenarios. However, while this discrepancy is un-
it only occurs with a low frequency and does not
ly impact the overall results in training models, as
ted in Section 7.3. Furthermore, within the sample

anomalous images are readily discernible from

identify them and further exclude them from the da
Besides manually filtering out low-quality images, w
add more detailed constraints on objects’ depth and siz
use more advanced and stable image generation mode
diffusion models for weather transformation in future

Stiking a better trade-off of between image g
ation speed and reality. Evaluating the reality of g
ated images transcends subjective judgments, dema
more than just quantitative metrics, as the perform
of generative models fluctuates across various scen
influencing the reality of the output. Despite the gene
models mentioned in Section 5 holding promise for cr
relatively realistic images, they face limitations in ens
precise object insertion and rapid generation. Curren
one wishes to generate a large batch of images in H
time becomes a limiting factor. Moreover, to achieve
generation speed, compromises often have to be ma
terms of resolution and detail. In future work, we a
use lightweight generative models to balance the gene
speed and reality.

Enabling more fine-grained control of weather c
tions. Enhancing precision in weather condition simu
is key to improving autonomous driving systems. C
models struggle with extreme or nuanced weather, p
ularly in replicating subtle lighting and visual effec
the control panel (Fig. 1D1), supported by an end-t
generative algorithm, we currently allow only a sing
rameter to adjust each weather condition, which lack th
ditions for fine-grained control of weather condition
instance, accurately generating images in complex w
conditions, such as rain or fog, requires more fine-gr
control over elements like the intensity and distribut
water droplets or fog and their interactions with light a
environment. Furthermore, since generation and det
correspond to each other, it is only possible to detect w
deficiencies in one parameter, which limits our abil
identify imbalanced feature distributions in the datas
only one parameter of each weather condition does not
for a detailed analysis of the dataset. In future work, w
to integrate simulators like CARLA[12] to achieve
fine-grained weather control.

Scalability of knowledge-based object insertion
knowledge-based controllable object insertion metho
cussed in Section 5.2 leverages spatial context lea
requiring user-input masks for CVAE processing a cha
for mask-lacking datasets like BDD100K. As an altern
we employ optimization through random noise sam
enhancing scalability and speed over CVAE, which is e
tial for rapid adaptation in diverse image sets. Howeve
method demands more from users in setting constrain
it lacks the mask-based guidance of spatial context lea
highlighting a trade-off between scalability and user
reliance. Additionally, even when models are employ
learn object features and constraints are added to gui
output objects, it is still possible that some objects w
inappropriate scale are generated. Nonetheless, since
incongruent images are often very obvious, users can
unding counterparts, enabling users to efficiently

ng et al.: Preprint submitted to Elsevier Page 14 of 16
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