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ABSTRACT

The rapid advancement of autonomous driving technology has reshaped the automotive industry,
highlighting the need for diverse and high-quality image data. Existing image datasets for training
and improving autonomous driving technologies lack rare scenarios like extreme weather, limiting
the effectiveness and reliability of autonomous driving technologies. One possible way of expanding
the dataset coverage is to augment the existing dataset with artificial ones, which, however, still
suffers from various challenges like limited controllability and unclear corner case boundaries.
To address these challenges, we design and develop an interactive visual analysis system, HuGe,
to achieve efficient and semi-automatic controllable image generation. HuGe incorporates weather
transformation models and a novel semi-automatic knowledge-based controllable object insertion
method which leverages the controllability of convex optimization and the variability of diffusion
models. We formulate the design requirements, propose an effective framework, and design four
coordinated views to support controllable image generation, multidimensional dataset analysis, and
evaluation of the generated samples. Two case studies, a metric-based evaluation and interviews
with domain experts demonstrate the practicality and effectiveness of HuGe in controllable image

generation for autonomous driving.

1. Introduction

In recent years, the rapid evolution of autonomous driv-
ing technology has significantly influenced the automotive
industry, driving advancements in vehicle automation, safety
features, and intelligent transportation systems. The perfor-
mance and reliability of current autonomous driving tech-
nologies highly depend on the training datasets. Currently,
most autonomous driving systems primarily utilize data
collected from daily driving scenarios for training and eval-
uation [29, 35]. While the lack of sufficient diversity is a
common challenge across various computer vision applica-
tions, it poses unique and critical challenges in the context
of autonomous driving [51, 9, 15]. Specifically, autonomous
driving systems must be capable of navigating highly dy-
namic and unpredictable real-world environments, which
include rare but potentially hazardous scenarios such as
extreme weather conditions (e.g., heavy snow, dense fog, or
intense rain), unexpected road obstacles (e.g., fallen trees or
debris), and unusual behaviors of other road users (e.g., jay-
walking pedestrians or animals crossing the road). However,
existing datasets often lack sufficient representation of these
edge-case scenarios, which can significantly compromise
the system’s ability to generalize and perform safely under
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such conditions [34]. In other words, the further improve-
ment of model performance is greatly constrained by the
data distribution of corner cases. When these corner cases
occur, they can lead to inaccurate predictions by the model
integrated into the autonomous driving systems, potentially
compromising the system’s safety and reliability in real-
world scenarios. Although some studies specifically focus on
extreme weather datasets for autonomous driving [25, 41],
featuring a variety of characteristics for different weather
conditions, they still lack effective methods to analyze and
address imbalances in certain dimensions of the dataset.

Therefore, to enhance the safety and reliability of au-
tonomous vehicles, it is crucial to ensure that the datasets
can cover as many scenarios a driver can face in real-world
situations as possible.

Expanding the coverage of special scenarios in datasets
commonly involves gathering more data from the real-world
and generating data for specific scenarios [43]. For the
former, collecting datasets for autonomous driving often
requires road testing [51], which, however, road testing
is often expensive and difficult to cover a wide range of
driving scenarios, such as various weather and road condi-
tions. Additionally, some research uses driving simulation
software to obtain virtual image samples that mimic real-
world scenarios [32]. While these simulated data have been
shown in some studies to supplement relevant datasets,
there are concerns about the fidelity of the simulations, and
whether these simulated driving scenarios can truly reflect
real-world conditions [28]. The gap between simulation
and reality underscores the limitations of relying on vir-
tual environments for comprehensive dataset enhancement.
Therefore, it is necessary to develop methods for generating
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Figure 1: HuGe supports the generation of image samples for autonomous driving: The data view (A) shows an overview of
a dataset, including the number of objects, the spatial distribution of objects and the distribution of different dimensions. The
control panel (B) allows users to set the option of the generation process and generate new samples. The sample view (C) provides
the distribution of the dataset with more details. The evaluation view (D) shows the generated results, where users can evaluate

and compare different generated samples.

artificial data based on real images, introducing additional
controllable factors. On the one hand, real-world image
datasets themselves contain a wealth of information about
real-world scenarios, aiding in training autonomous driving
systems to better understand and adapt to the complexity
and unpredictability of the real world. On the other hand,
incorporating controllable factors into existing image data
helps developers design specific scene images they need at a
lower cost.

However, it is not easy to generate artificial data based
on real images. Based on surveys of past research and expert
interviews, we have identified three key challenges: (1)
Limited controllability. The current methods for generating
image samples offer limited controllability, particularly in
their ability to customize image attributes across multiple
aspects, such as lighting conditions, object positions and
weather variations. This limitation highlights the absence of
a unified framework—a comprehensive system capable of
integrating these diverse aspects into a cohesive generation
process. Such a framework would enable users to specify and
control multiple attributes simultaneously, ensuring that the

generated images align more closely with specific require-
ments. (2) Unclear boundary of corner cases. Although ex-
isting studies have categorized corner cases for autonomous
driving into different levels, they have not clearly defined and
analyzed the boundaries of these corner cases, which hinders
the generation of corner cases. (3) Complex distribution of
the dataset. It is hard to know in which direction should we
generate new images and how the generated images change
the distribution, as well as whether they make up for the
missing corner cases in the original dataset.

To address the aforementioned challenges, we designed
and developed HuGe (Fig. 1), an interactive visual anal-
ysis system tailored for the artificial generation of image
samples for autonomous driving. Over approximately two
months, we engaged in close collaboration with experts in
autonomous driving to define the system’s design require-
ments and ensure its alignment with real-world application
needs. Based on the derived tasks, a complete pipeline and
four coordinated views are designed to support controllable
image generation. To improve the controllability of artificial
image generation, we identify a series of controllable factors
(e.g., weather, illumination, object positioning, and degree
of occlusion), and design a highly efficient, semi-automatic,
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and controllable sample generation method. This method
employs a hybrid methodology that integrates convex opti-
mization and Conditional Variational Autoencoders (CVAE)
to identify candidate locations for obstacles while leverag-
ing a diffusion model to generate the obstacles in located
position. To explore the boundary of corner cases, HuGe
allows users to adjust parameters of controllable factors and
generate different images. Further, to easily explore the com-
plex change of the dataset, HuGe supports multidimensional
analysis and mining of datasets, as well as evaluation of the
generated samples visually. We demonstrate the effective-
ness of our method through two case studies covering object
insertion and weather condition adjustment, a metric-based
evaluation, as well as interviews with domain experts. In
summary, the primary contributions of this paper are:

e We develop HuGe, an interactive visual analytics sys-
tem for controllable image generation and exploration
in autonomous driving scenarios. HuGe supports mul-
tidimensional analysis, dataset mining, and evaluation
of generated samples.

e We provide an effective paradigm for controllable im-
age generation that considers weather transformation
and object insertion, making it work for a variety of
driving scenarios.

e We introduce a semi-automatic knowledge-based ob-
ject insertion method that combines traditional al-
gorithms with generative models, allowing users to
efficiently expand dataset coverage based on specific
needs..

e We conduct two case studies, a metric-based evalua-
tion, and interviews with domain experts, providing
comprehensive evidence of the usefulness and effec-
tiveness of HuGe for controllable image generation in
autonomous driving.

2. Related Work

This section presents studies related to our research
in three categories, namely, autonomous driving scenario
image generation, controllable generation, and visualization
exploration of image datasets.

2.1. Autonomous driving scenario image
generation

Due to the difficulty in acquiring real autonomous driv-
ing scenario data, many researchers have turned to artifi-
cially generating data to synthesize new datasets [50, 53,
44, 37]. Some researchers use simulation data [2, 47], but
the data produced by simulation platforms often lack reality
and are dependent on the scenario designer’s understanding
of the environment. In contrast, datasets generated from
data collected in real scenarios exhibit greater diversity and
complexity [28, 8], which aids in training models to better
generalize and handle a variety of different situations and
scenarios. Since the dataset is directly sourced from practical

application scenarios, it is closely related to actual problems
and applications. This enhances the practicality of the data,
making models trained from the dataset more adaptable to
real-world conditions.

In the context of autonomous driving scenario images,
common generation methods include adversarial attack-
based methods and knowledge-based methods. For ad-
versarial attack-based methods, some researchers added
specifically modified black dots, rectangles, or noise [37,
42, 48] to create adversarial attacks aimed at identifying
and generating risky scenarios, but such adversarially mod-
ified data are almost impossible to exist in reality. With
the advent and development of generative models, many
studies utilized these models for transformations that are
more aligned with real-world scenarios. For instance, some
studies [53, 36, 45] used GANSs to generate driving scene
data under various adverse weather conditions. Liu et al. [32]
simulated natural raindrops to perform adversarial attacks on
traffic sign detection. However, these methods are limited
as they only consider changes in dimensions of weather
or illumination. In our work, we consider transformations
across multiple dimensions including weather, illumination,
object positioning, and degree of occlusion.

In knowledge-based methods, generation is primarily
driven by incorporating expert experience or integrating ex-
ternal knowledge. For instance, Xu et al. [50] utilized GANs
to generate day-night images and sharp cut-in scenarios.
Deng et al. [11] generated various driving scene tests under
different conditions based on human-written rules. While
these methods have expanded the range of testable driving
conditions and improved scenario coverage, they still exhibit
limitations in generating more complex, real-world driving
scenarios that encompass unpredictable and highly dynamic
elements.

Our method integrates convex optimization with CVAE
model [42], enabling automatic identification of appropri-
ate locations for placing objects. Additionally, given the
strengths and limitations of diffusion models, we employ a
hybrid approach that combines diffusion models with rule-
based methods for open-set generation. This allows users to
quickly generate batches of realistic and complex scenes,
catering to a broader range of scenarios than previously
possible with traditional methods.

2.2. Controllable generation

In the fields of Natural Language Processing (NLP) and
Computer Vision (CV), controllable generation is a pivotal
research topic aimed at precisely manipulating the output of
generative models. This concept focuses on generating data
that meets specific requirements or follows predefined guid-
ing conditions, such as text [21], images [27], or videos [20].
There are various methods to achieve controllable genera-
tion, mainly categorized into three types: quantitative con-
trol, qualitative control, and positional control.

In terms of quantitative control, methods like Style-
flow [1] utilize sliders to precisely adjust specific attributes
such as age or gender. For qualitative control, models like
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OpenAl’'s DALL-E-2 [39] allow users to guide the im-
age generation process by inputting text. In the context of
qualitative control for autonomous driving, GAIA-1 [19]
generates videos by taking input in the form of actions, text,
and video. Another example is from a study [11], where
users can customize traffic rules to control image generation.
As for positional control, ControlNet [52] guides the image
generation process of stable diffusion by using additional
information such as depth maps or keypoints. Addition-
ally, EditGAN and pix2pix [22, 31] allow adjustments to
generated images by manipulating masks, though in some
cases, these adjustments may still require user intervention
depending on the complexity of the desired modifications.

To further streamline this process and minimize manual
effort when significant modifications to image datasets are
required, we propose an alternative approach. Instead of
requiring users to modify individual images, our method
enables users to visualize the dataset distribution and select
regions of interest through bounding boxes. This approach
provides an efficient way to modify the dataset, saving time
and reducing human effort.

2.3. Visualization exploration of image datasets

In recent years, many research organizations have con-
structed a large number of representative large-scale datasets,
which have significantly propelled breakthroughs in artificial
intelligence across multiple research fields. However, with
the continuous expansion of these datasets, traditional man-
ual exploration and evaluation methods have increasingly
revealed their limitations in terms of time consumption
and inefficiency. Consequently, many researchers have con-
structed visual analysis systems from a human-computer
interaction perspective. They utilize visualization tools to
explore image datasets, aiming to understand these complex
and large-scale data collections.

Chen et al. [7] developed a general model evaluation
system applicable to major tasks in the field of computer
vision, employing a variety of visualization methods such
as matrix, table, and grid. This system can identify issues
affecting model evaluation in individual image samples.
Addressing the problem that common methods for exploring
datasets are not applicable to large-scale datasets, Bertucci
et al. [4] utilized treemap for visualizing large-scale im-
age datasets. They employed hierarchical cluster structures
to provide multi-level exploration of image datasets. Gou
et al. [16] combined disentangled representation learning
and semantic adversarial learning techniques to develop
VATLD, a visualization system that assists in evaluating
and understanding the effectiveness of Traffic Light De-
tection in image datasets. Similarly, Wang et al. [46] in-
troduced DRAVA, representing image datasets as a set of
small multiples and using a concept-driven approach to
help users better analyze and resolve mismatches in the
understanding of concepts between humans and models in
disentangled representation learning. Xie et al. [49] utilized
convolutional neural network (CNN) methods to generate

descriptive captions for images, enabling multi-scale ex-
ploration and analysis of large image collections. Another
study [6] generated adversarial examples for each image in
the dataset and proposed a visual analysis method to interpret
the reasons for the misclassification of adversarial examples
through multi-level visualizations. In addition, in the context
of the driving domain, AutoVis [23] addressed this gap
by combining a non-immersive desktop interface with a
virtual reality view, enabling mixed-immersive analysis of
Automotive User Interfaces.

In addition to analyzing existing image datasets, explo-
ration of generated images has also been a focus. Feng et
al. [13] jointly embedded the results of images generated
by text-to-image generation models and the recommended
keywords, supporting personalized exploration by users.
Compared to previous works on image dataset exploration,
our approach further considers the systematic generation and
evaluation of image datasets through interactive exploration.
This method is user-oriented and leverages original, real im-
age datasets as a foundation to generate outcomes anticipated
by the users.

3. Observational Study

In this section, we summarize the experts’ conventional
practices and the bottleneck of creating autonomous driving
image datasets, and further distill their needs and expecta-
tions.

3.1. Experts’ Conventional Practice and
Bottleneck

We collaborate with four domain experts in the au-
tonomous driving field. They include three seasoned pro-
fessionals from the automotive industry (E1, E2, E3) and
a researcher specializing in autonomous driving algorithm
design (E4). E1 (male, age: 30) and E2 (male, age: 28) are
experts in 2D/3D visual perception for autonomous driving,
E3 (male, age: 29) is an expert in driving weather simulation,
and E4 (male, age: 34) focuses on image generation for data
augmentation through algorithm design. Each member of
this group has dedicated over four years to their specialized
fields.

Through discussions and research with experts, it has
been confirmed that the mainstream methods for creating
autonomous driving image datasets primarily involve the
collection of real-world driving data. This process is pri-
marily executed through field-based data gathering, wherein
vehicles equipped with various sensors navigate through
diverse driving environments to capture a wide range of driv-
ing scenarios. This raw data collection is then extensively
supplemented by manual labeling processes, carried out by
human annotators. These annotators identify and tag various
elements within the images, such as vehicles, persons, road
signs, and lane markings, to create a richly annotated dataset
that is crucial for the training and validation of autonomous
driving systems. This manual annotation is a labor-intensive
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Figure 2: The pipeline of HuGe: in the back-end generation engine, three main modules are applied for weather transformation,
object insertion, and weather condition recognition; in the front-end visualization, four coordinated views are designed for image

exploration, generation, and evaluation.

and time-consuming task, requiring a high degree of preci-
sion to ensure the accuracy and reliability of the dataset. Ad-
ditionally, for the acquisition of particularly uncommon in-
stances, experts need to proactively create specific scenarios,
such as deliberately placing particular obstacles on a road.
Although these approaches can supplement some datasets,
domain experts all agree that conventional practices often
pose challenges in terms of controllability and incurring
time and labor costs. Within the ambit of data acquisition,
these experts encounter the following challenges. A primary
concern is the intensive labor and significant time invest-
ment demanded by the manual annotation process, which
stands as the most resource-consuming aspect of compiling
datasets. The emergence of data generation technologies that
naturally include annotations presents a promising avenue
to significantly reduce these resource expenditures. Further-
more, the data collection phase, although seemingly straight-
forward, often requires experts to comb through extensive
volumes of non-relevant data to identify the precise datasets
needed. This highlights an urgent need for improved control
mechanisms in the data acquisition process to streamline
and target data collection more effectively. Additionally,
E3 brought attention to the utilization of laboratory-based
virtual simulations for generating data on uncommon sce-
narios where experts need to carefully design and set up con-
trolled environments through manual intervention in real-
world laboratory. While this method is effective in capturing
rare events, its implementation requires high costs, further
emphasizing the need for cost-efficient solutions.

3.2. Experts’ Needs and Expectations

To ensure the alignment of our approach with the over-
arching tasks and requirements within the field, we further
conducted interviews with experts (E1-E4). These inter-
views aimed to pinpoint their primary concerns regarding
the development of controllable image generation. Through
the iterative design process and our interactions with the
experts, we distilled the following design requirements.

R.1Provide an overview of the selected image dataset.
It is important to obtain a comprehensive assessment of
the dataset from a holistic perspective, which can provide
insights into the dataset. For example, the distribution of

what categories are in the dataset, what kinds of samples are
dominant, and if lack of some important samples. Experts
mentioned that this information can provide guidance for
exploring possible corner cases and generating controllable
corner cases.

R.2 Explore possible corner cases in the image dataset.
Corner cases are generally dangerous and novel, difficult to
judge by a single indicator, and it is challenging to effectively
classify corner cases from a data set. Experts seek intuitive
and rapid identification of potential corner cases through
visualizations that aid in analysis and evaluation. Therefore,
there is a need for visualization and interaction design to help
users efficiently identify potential corner cases.

R.3 Generate controllable corner cases based on the
image dataset. In addition to the corner cases inherent in
the dataset itself, some corner cases may arise in samples
not covered by the dataset, such as those involving rainy
or foggy conditions. Furthermore, existing datasets cannot
encompass all possible road conditions. To address these
issues, experts hope that our system can offer an interac-
tive, human-controllable sample generation technique. This
system would be capable of generating samples in bulk
according to specified requirements, thereby expanding the
sparse areas of the dataset.

R.4 Evaluate and compare generated image samples.
The samples generated may exhibit certain issues, necessi-
tating a further assessment of their quality with the expertise
of professionals. Moreover, experts are required to compare
the outcomes of images generated through various human-
controlled parameters to ascertain which parameters yield
superior results. The system needs to incorporate compar-
ative views, enabling experts to inspect and evaluate the
generated samples, thereby ensuring the quality and appli-
cability of these samples.

4. Approach Overview

We propose HuGe, an interactive visual analytics system
for generating controllable images based on the proposed
generation method that combines traditional optimization
algorithms and generative models. Fig. 2 shows the pipeline
of HuGe, which consists of a back-end generation engine and
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a front-end visualization. In the backend generation engine,
three integral modules are implemented: weather transfor-
mation, object insertion, and weather condition recognition.
The weather transformation module facilitates meticulous
manipulation of weather parameters such as rainfall inten-
sity, fog density, and illumination, affording users precise
control over environmental elements. The object insertion
module empowers users to seamlessly integrate diverse ob-
jects into a curated selection of images, enhancing the versa-
tility and customization of generated content. Furthermore,
weather condition recognition is designed to identify and
quantify the severity of weather conditions, enabling users
to select images from the original dataset that match their
interests in terms of weather intensity. In the front-end
visualization, four coordinated views are designed for im-
age exploration, generation, and evaluation. To be specific,
the data view (Fig. 1A) gives an overview of the selected
dataset. This high-level summary allows users to quickly
assess the composition and characteristics of the dataset
before proceeding to more granular exploration (R.1). The
control panel (Fig. 1B) allows users to conduct fine-grained,
parametric control over a multitude of factors, including
global environmental conditions and granular object-level
attributes (R.3). The sample view (Fig. 1C) enables users to
explore the distribution of the selected data in greater granu-
larity across two user-specified attributes, which provides in-
depth exploration of possible corner cases (R.2). The evalua-
tion view (Fig. 1D) performs a comprehensive evaluation of
the synthetic outputs, analyzing at both the aggregate dataset
level as well as the granular instance level, which shows
evaluation metrics across four widely adopted indexes and
visual comparisons between the original seed images and
their corresponding synthetic counterparts (R.4).

5. Back-end Engine

In this section, we describe the methods and mod-
els adopted for weather transformation, knowledge-based

controllable object insertion, and intensity recognition for
weather conditions in the back-end engine.

5.1. Weather Transformation

When modifying image environments, domain experts
often prioritize illumination, fog, and rain as key factors
due to their frequent occurrence and significant impact on
driving conditions [36]. Therefore, our focus in this study
is on transformations related to these factors (R.3), without
considering conditions such as snow and hail, as they repre-
sent a practical starting point for addressing environmental
variability in autonomous driving scenarios. The example
effect of changing the weather conditions is shown in Fig. 3.

For illumination transformation, we adopt the high-
resolution daytime translation model (HiDT) [3] which
can produce high-resolution images with variations in il-
lumination. Using HiDT, we achieve realistic illumination
modifications across various images.

For fog transformation, we adopt CycleGAN [54], a
prototypical Conditional Generative Adversarial Network
(CGAN), which can provide precise control over the gener-
ative process. It requires solely input images and associated
degrees of fog, to generate the synthesis of authentic foggy
imagery.

For rain transformation, unlike illumination and fog,
there is a scarcity of annotated datasets specifying rain inten-
sity, complicating the use of generative models like GAN for
controlled rain generation. MagicDrive [14] effectively gen-
erates realistic rain effects, yet its approach, while rendering
accurate rain patterns, often alters the quantity, position, and
color of objects in the image. Additionally, control over rain
intensity is achieved only qualitatively through verbal cues,
lacking the desired quantitative precision. In our study, to
maintain object characteristics in driving scenes and achieve
precise control over rain intensity, we adopted the approach
proposed in [45] for rain generation. This method can pro-
duce varying degrees of realistic rain images.

5.2. Knowledge-based Controllable Object
Insertion

As shown in Fig. 4, we utilize optimization algorithms
and diffusion models to controllably add objects to images
based on users’ expectations. Specifically, we employ a
conditional variational autoencoder (CVAE) [42] to derive
candidate boxes. These boxes are then optimized through
an iterative process that incorporates predefined rules—such
as aspect ratio, size limits, and alignment with the road
surface—and user-specified adjustments, such as modifying
the position, depth, or occlusion percentage. This itera-
tive optimization refines the bounding boxes to meet both
the constraints and user-defined preferences, providing fine-
grained control over various aspects of the generated boxes.
Afterward, we employ a diffusion model, the GLIGEN [30]
model, to introduce user-specified objects into the original
image.
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utilized to introduce user-specified objects into the original image.

Initially, similar to the approach proposed in [18], we
also use the CVAE model to extract latent features and gener-
ate candidate obstacle positions through context-aware spa-
tial representation learning. The resultant bounding boxes
are intricately linked to the semantic information of the
images, ensuring a more coherent fit with image semantics
compared to the generation of arbitrary positions. However,
we find that relying solely on semantic segmentation maps
without depth information can lead to unreasonable occlu-
sion order when adding obstacles based on the sampled
latent vectors, e.g., an object that should be occluded ap-
pears in front of the occluding object. In addition, the box
sizes generated by this method may not match the actual
object sizes, and it cannot generate novel unseen objects.
Furthermore, the physical meanings represented by certain
latent vector dimensions are rather difficult to comprehend,
preventing the desired controllable generation.

To address the issues of occlusion order and object
size, we incorporate depth information into the context-
aware spatial representation learning framework. As shown
in Fig. 4, this methodology utilizes a depth estimation model,
specifically ZoeDepth model [5], which has been fine-tuned
on the KITTI [33]—an authoritative dataset in autonomous
driving research—to extract and integrate relative depth
data. Leveraging foundational principles of imaging and
projective geometry, assuming no lens distortion and the
actual height and width of an object are (h,, w,), its distance
from the camera is d, then its height and width (h;, w;) in
the image relate to d by h; = %; w; = fzw". Here f
is the focal length. Hence the area S; of the object box in

the image and its physical area S, satisfy .S; = g—;So. It
follows that the object dimensions in the image are inversely
proportional to the square of depth. For objects in the orig-
inal dataset, we can estimate their real size distribution by
aggregating statistics of the product of their width, height,
and depth. Therefore, given the average depth of the box
edges, we can compute the distribution of (;, w;) and filter
out unreasonable candidates accordingly. For new objects
outside the dataset, users can define their aspect ratio relative
to a reference object to obtain the size distribution. This
allows for ensuring plausible occlusion orders and object
sizes. Similarly, for occlusions, we compare the depth of

the candidate bounding box with that of intersecting objects,
constraining that the depth of the occluding object’s bottom
edge is not less than that of the occluded object’s bottom
edge. This ensures that the bounding box is positioned
correctly in space.

Furthermore, acknowledging the inherent characteristics
of obstacles and common scenarios, we impose constraints
on the aspect ratio of obstacles and constraints related to the
road surface. Users have the flexibility to add constraints to
the candidate bounding box based on their specific require-
ments, such as constraints on the percentage of occlusion,
position, or depth. For instance, in the scene shown in
Fig. 4, the straw was assigned a greater depth value (i.e.,
placed farther away) than the car based on the estimated
depth map. The optimized bounding box reflects this specific
depth requirement while preserving the object’s natural re-
lationship with the road surface. Considering the non-linear
and constraint-heavy nature of the optimization problem,
we adopt the COBYLA optimization algorithm [38] due to
its ability to handle non-linear constraints effectively and
its balance between performance and runtime efficiency.
To streamline the optimization process, we define a set of
simple and easily satisfiable constraints, including aspect
ratio and size, as the foundational constraints. It is mandated
that the generated bounding box must adhere to these base
constraints before initiating the optimization algorithm for
resolution. This strategic approach serves to mitigate the
complexity of optimization and enhances the feasibility of
achieving satisfactory results.

Finally, we adopt the GLIGEN [30] model as the gen-
eration backbone, due to its strong zero-shot capability and
its flexible design for incorporating multiple conditioning
inputs. In our study, we specifically utilize GLIGEN’s in-
painting mode, which not only preserves the surrounding
context but also allows the model to naturally reason about
spatial coherence, lighting, and texture consistency. As il-
lustrated in Fig. 4, the model synthesizes the final completed
image based on the given bounding box, object category, and
original image, along with optional inputs such as textual
descriptions and reference images.
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5.3. Intensity Recognition for Weather Conditions

Recognizing the intensity of different weather conditions
in selected images could provide information for exploring
and comparing the original image dataset and the generated
image dataset. Given that prevailing autonomous driving
datasets typically annotate weather types but lack detailed
information on the intensity, we conduct training on the
recognition of rain, fog, and illumination. To ensure consis-
tency between the model’s results in intensity recognition
and the generated intensity scale, we apply the control-
lable weather generation models mentioned in Section 5.1
to transform images in the dataset. Using the controllable
weather generation models’ output conditions as labels, we
successfully constructed a dataset containing 59,500 images
with information on the intensity of rain, fog, and illumi-
nation based on the trainset of Cityscapes. Building upon
this dataset, we train three ResNet [17] models specifically
dedicated to the task of rain, fog, and illumination intensity
classification. Then, we evaluate the performance of the
three ResNet models, and their mean squared errors on
the test set are consistently within 0.05, which can provide
satisfactory results for the following tasks.

6. Front-end Visualization

We design and implement a visual analytics system to
explore, generate, and evaluate image samples, as shown
in Fig. 1. The system consists of four views: the data view,
the control panel, the sample view, and the evaluation view.

6.1. Data View

The data view (Fig. 1A) contains four components,
including widgets for configuring datasets (Fig. 1A;), a
stacked bar chart showing the number of objects (Fig. 1A,), a
heatmap showing the spatial distribution of objects (Fig. 1A3),
and a radar chart with violin plots showing the distribu-
tion of different dimensions (Fig. 1A,), which provides an
overview of the selected dataset. After users select a dataset,
the corresponding information will be updated. Users can
select specific scene within the dataset to conduct in-depth
exploratory analysis on the selected scenario. To provide
information about what objects are in the image dataset, the
stacked bar chart (Fig. 1A,) is used to display the count of
different objects. In this chart, green color represents the
original image data, while the orange color represents the
generated image data. Given the significant differences in
the quantity of various objects (for instance, the number of
trucks is much less than that of cars), a logarithmic function
is used to adjust the scale of the y-axis. Furthermore, a
heatmap is used to display the depth and position of different
objects in the selected dataset (Fig. 1A3). The x and y axes
of the heatmap correspond to the width and height of the
image samples, respectively, where redder areas indicate
higher object overlap rates in those regions. Lastly, a radar
chart with violin plots (Fig. 1A,) is integrated to perform
statistical analysis across multiple dimensions of the overall
image dataset, including the number of objects, the depth of
objects, the degree of occlusion, and weather conditions in

Original image

» Generated image

(a) (b) (¢) (d)
Figure 5: Current design of the sample view. (a) Divide samples
into different grids and count the number of samples in each
grid to draw the heatmap matrix. (b) Select samples in a region
of interest. (c) Hover to check selected samples. (d) The image
of the corresponding samples will be displayed in Fig. 1Cs.

the images, like rain, illumination, and fog. The sector partin
the middle shows the KL divergence value between the dis-
tribution of each dimension and uniform distribution. After
calculating KL values, then a normalization is performed.
Large areas indicate a larger uneven distribution.

6.2. Control Panel

To provide human-controllable and quantifiable settings
in the generation process, we designed the control panel
(Fig. 1B), which contains two main functional modules: one
for adjusting weather conditions (Fig. 1B;) and the other for
adding new objects (Fig. 1B,).

To start the generation process, first, users are required
to select a group of samples and decide how many new
samples need to be generated in the sample view (Fig. 1C).
For adjusting the environment, users can adjust the fog, rain,
and illumination (“Illum”) levels of the dataset in Fig. 1B,
ranging from O to 1. For adding new objects, users can select
different objects, including cars, trucks, persons, and so on.
Users can then adjust the distance (“Depth”) and occlusion
of the objects (“Occlusion”) in Fig. 1B,. To allow new
objects to appear in a certain area, users can select the area of
interest in Fig. 1A5. Finally, users can click the “Generate”
button to generate a new batch of samples.

6.3. Sample View

The sample view (Fig. 1C) is the primary view for users
to explore the image collection. It aims to assist users in
exploring the distribution of the data set along certain di-
mensions with more details. Users can select two dimensions
as the x-axis and the y-axis correspondingly in Fig. 1C;. The
heatmap matrix in the middle (Fig. 1C,) demonstrates the
distribution of the dataset in two selected dimensions and
each grid of the heatmap matrix contains image samples.
The histograms along the two axes (Fig. 1C;) display the
distribution of the dataset in one dimension. Users are al-
lowed to select data samples in the heatmap matrix to further
explore the distribution of samples. Considering that the
user’s primary intention is to fill in sparse or missing areas
using the original dataset, our design focuses on showing the
distribution of both the existing and generated images rather
than just the generated images. When users complete the
selection, the data samples will be highlighted, and a pop-
up window will display a sample scatter plot (Fig. 1C,). The
x-axis and y-axis of the scatter plot are consistent with two
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Figure 6: Alternative designs for the sample view. (a) Display a
PCA-reduced scatter plot with DBSCAN clusters, using color
to differentiate clusters. Zooming in reveals details via (b) a
radar chart, detailing a point’s metrics across six dimensions,
with color indicating cluster membership; or (c) a glyph, using
six sectors to represent dimensional information, with the
sector’s height representing relative quantity.

dimensions selected by users, with the range of the two axes
matching the selected area. The green dots mean samples
from the original dataset, while the yellow dots indicate
generated samples. As shown in Fig. 5c, users can hover
over dots and the image of the samples will be displayed
in Fig. 1C5. After generating the image samples, each cor-
responding grid in the heatmap matrix will be divided into
two triangles (Fig. 1Cg). The left-bottom part represents the
original image data in that area, while the right-top part
shows the distribution of original image data combined with
the batch-generated images.

Alternative design. During the iterative development
process, we explored two alternative designs for the sample
view. Initially, we intended to use scatter plots to display
information across all six dimensions. To achieve this, we
first applied PCA to reduce the dimensionality of the data
to a two-dimensional plane, followed by clustering using
the DBSCAN algorithm. In the scatter plots, the x and y
axes represent the two dimensions obtained through PCA,
with point colors indicating cluster categories, as shown
in Fig. 6a. To present detailed information on the six di-
mensions, we designed an approach where points would
transform into radar charts or glyphs upon zooming in, as
illustrated in Fig. 6bé&c. In the radar chart (Fig. 6b), the
six axes correspond to the relative information on the six
dimensions, with color representing the cluster category. In
the glyph representation (Fig. 6¢), six sectors each repre-
sent a dimension, where the sector’s height indicates the
relative information level. However, due to large number of
images, there was significant overlap between glyphs and
radar charts, making data unclear. Additionally, the PCA-
driven approach reduced dimensionality but obscured criti-
cal details needed for setting specific parameters. Ultimately,
we did not adopt this design option.

6.4. Evaluation View
The evaluation view (Fig. 1D) is designed for analyzing
and comparing the generation results, which consists of

two parts, a radar chart showing four evaluation metrics
(Fig. 1D;) and an image list comparing generation results
(Fig. 1D,).

Firstly, for the batch of image samples, we have se-
lected four evaluation metrics: Fréchet Inception Distance
(“FID”), Inception Score ( “IS”), Precision, and Recall. FID
focuses on the overall similarity between generated and
real images, while IS evaluates the quality and diversity of
individual images. A lower FID score indicates higher image
quality and realism, whereas a higher IS score suggests
good quality and diversity. Both metrics are often used
together to assess the performance of generative models.
Additionally, we adopt the improved precision and recall
metric [26], where precision gauges how closely generated
images resemble real data, and recall measures the diversity
of generated images in capturing the real data distribution.
Specifically, in the context of generative models, the inter-
pretation of precision and recall changes. Precision measures
the proportion of generated images that are “realistic”, that
is, those that closely mimic the real data distribution. A
high precision implies that the majority of images gener-
ated by the model are indistinguishable from those in the
actual dataset. As for recall, it assesses the diversity of the
generated images, or in other words, the extent to which
the model captures the real data distribution. A high recall
indicates that the model can generate a broad range of images
that convincingly resemble those from the real dataset. In
summary, an ideal image generation model should possess
low FID, high IS, high Precision, and high Recall scores,
indicating the model’s capability to generate images that are
both realistic and diverse in high quality. We present these
four metrics in the form of radar chart and normalize them
to the same scale in Fig. 1D;. It is important to note that
only the FID metric is better when lower, while metrics like
IS are better when higher. Therefore, for FID, we use the
reciprocal form, i.e., 1/FID. To showcase real images and
compare them before and after generation, we present the
batch of image samples as an image list. Additionally, we
visualize the selectable sort values from the dropdown menu
as green bars. For example, in Fig. 1D,, the length of these
bars indicates the depth of the cars. Users can select different
dimensions for sorting and comparing the effects of images
before and after generation side by side, which can provide
intuitive guidance for the subsequent image generation.

7. Evaluation

We conducted two case studies, a metric-based evalu-
aiton and interviews with E1-E6 to demonstrate the effec-
tiveness and usability of our system. The background of E1-
E4 has been introduced in Section 3.1. ES (female, age 30)
and E6 (male, age 29) are newly invited experts who have
a strong expertise in visual perception for autonomous driv-
ing. Section 7.1 and Section 7.2 present the cases conducted
by El and E3 respectively. Section 7.3 presents a metric-
based evaluation of our method’s impact on improving the
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“depth” heatmap

(a) (b)
Figure 7: (a) shows car distribution in the “depth” heatmap,
while (b) shifts focus to the “position” heatmap for car
placement. The manually selected range is highlighted in blue.

“position” heatmap

detection model’s performance. Section 7.4 presents the
feedback from all experts.

7.1. Case I: Controllable insertion of cars and
persons

E1 focuses on improving object detection in autonomous
driving and often needs to test models on different scenarios,
particularly those involving potential hazards. In this case,
he would like to explore the original dataset and generate
some images that may present higher risks for testing. More-
over, he believed that acquiring images of target objects at
varying depths and positions in real-life conditions presents
significant challenges. Consequently, he aspires to freely
manipulate images in these aspects for more comprehensive
analysis. At first, E1 selected the Cityscapes dataset [9], a
widely used object detection dataset, for preliminary explo-
ration. This dataset, consisting of densely pixel-annotated
urban landscapes across 19 categories, captures street scenes
in 50 cities. As shown in the bar chart (Fig. 1A,), he noticed
“car” and “person” were the two most abundant categories.
These also are crucial recognition targets in autonomous
driving scenarios, hence they were selected as subjects of
analysis. When clicking on the bar corresponding to “car”,
he found the color of center area in the “depth” heatmap was
darker than other areas (Fig. 7a), which indicated “car” in
the middle was far away. Also, switching to the “position”
heatmap, he found the color of center area was lighter
than other areas (Fig. 7b), which indicated most cars were
positioned along the roadsides and few cars ahead at close
range. In densely populated urban areas, close proximity of
cars is common and poses a high risk. Therefore, E1 selected
the area using a blue rectangle (Fig. 7b) and decided to add
cars in this area to simulate high-density urban traffic and
address dataset shortcomings. Then, to select base images
for desired image generation, he turned to the radar chart
(Fig. 1A,) for analyzing different dimensions. To insert cars,
El placed greater emphasis on dimensions more pertinent
to the insertion of cars and persons, rather than on weather-
related aspects. He noticed significant KL divergence in the
number dimension but less so in depth. Hence, he selected
“number” as the x-axis and “depth” as the y-axis, the distri-
bution of the original image dataset was shown in the sample
view (Fig. 1C). Considering image generation with less
occlusion, he decided to select images with less number
and large depth of cars as the base images, as shown in the
position of the red box in Fig. 1C;. Further, in the control

people Spatal Distribution
car

Figure 8: Adding “person” additionally to images that already
have cars inserted. (a) the generated image after adding “car”
based on the original sample image from Cityscapes. (b) the
position distribution of persons, where we first select the area
on the left and then proceed to add “person”. (c) the generated
image after adding “person” again.

panel (Fig. 1B), he entered the prompt word “car” and grad-
ually adjusted the depth, choosing distances of [1,3], [2,4],
[3,5] as parameters for three rounds of generation. The gen-
eration multiplier was set to the default 1X. After pressing
the generate button, desired images are generated. The semi-
automatic bounding box generation process exhibited an
average computational time of about 0.8 seconds per image,
demonstrating an acceptable performance in augmenting the
dataset. Taking the distance range of [1, 3] as an example, at
the position of the sample (Fig. 1C), the original rectangle
has transformed into two triangles, significantly filling the
previously white (data-sparse) area. Additionally, as shown
in Fig. 1C5, the newly generated image data appeared in the
form of small yellow rectangles. Furthermore, E1 compared
the original and generated images by clicking on the newly
generated yellow dots in Fig. 1C, and the corresponding
changes in Fig. 1D,. Upon a meticulous examination of all
three batches of the generated images, E1 confirmed that
all synthesized objects adhered to the specified requirements
and exhibited contextually an appropriate spatial layout, en-
suring the integrity and relevance of the augmented dataset.
After that, E1 moved to the evaluation view (Fig. 1D) to
compare the three batch generated images. The scale on the
right axis represented the value of 1/FID. When the right
endpoint of the quadrilateral moves further to the right,
the value of FID is lower, indicating a closer statistical
resemblance to real images. Firstly, based on the distribution
of the right vertices of quadrilaterals in Fig. 1D, the results
of the third batch were closer to the origin, indicating that
the FID value of the third batch was higher than those of
the previous two generations. Secondly, the scale on the left
axis represented the value of precision. The higher precision
value suggested that the generated images were closer in
quality to real images. The expert believed the generated
objects might have less impact on the overall image because
they are farther away, appear smaller, and occupy fewer
pixels. Thirdly, the IS and Recall values of the three batches
were similar, indicating no significant change in image di-
versity. After the comparison, E1 thought the third batch had
better quality. Taking everything into account, E1 decided to
incorporate the third batch of data into the original dataset.
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Figure 9: Experts workflow for controllable generation of corner cases on the BDD100K dataset. (1) Foggy Conditions with Poor
Visibility on Highway. (1) Rainy Residential Area with a Cow. (IIl) showcases examples of the final generated images; the upper
part is the result of process (I), and the lower part is the result of process (II).

Similarly, E1 would like to generate images with “per-
son”. He then selected “person” as the subject for further
analysis in the statistical bar chart (Fig. 1A,). Observing the
spatial distribution heatmap (Fig. 8b), he noted that there was
a higher concentration of persons on the right side compared
to the left. Consequently, he aimed to add more persons
to the left side of the images. Additionally, he considered
that to generate dangerous scenario, he selected the first
batch of images with cars relatively close to the original
image (Fig. 1C¢). By adjusting the slider (Fig. 1B,), he chose
100 images to add “person”. In the end, he obtained the
desired result, as shown in the example in Fig. 8c.

In summary, E1 found that the operation workflow of
HuGe is intuitive and straightforward, enabling the creation
of image data that is usually difficult to capture through con-
ventional road testing with cameras. He stated: “Although
some objects in the images might not be completely realistic,
they nonetheless contribute to enriching the dataset for
object detection model testing. Coupled with visual analysis,
this represents a meaningful endeavor.”

7.2. Case II: Controllable generation of corner
cases

In this case, we collaborated with E3 to systematically
explore the capability of HuGe in generating controlled
corner cases for autonomous driving. His primary focus was
on the effectiveness of HuGe in producing images of extreme
situations, particularly those involving low visibility due to
severe weather conditions and the presence of uncommon
objects on the road. Drawing from 5 years of weather simula-
tion experience, E3 identified significant limitations in exist-
ing autonomous driving datasets regarding extreme weather
conditions, citing their rarity, unpredictability, and high
collection costs. Consequently, E3 opted to utilize HuGe for
generating and adjusting weather conditions in these cor-
ner case scenarios. At first, E3 selected the BDD100K
dataset [51] for exploring weather conditions in image

datasets, as this dataset includes scenes under various times
and weather conditions. Then, he noticed that under the
highway category, the number of trucks ranked second, as
shown in the Fig. 9B. “Trucks are primarily used for cargo
transportation on highways.” he said. He mainly focused
on the weather and considered fog, rain, and illumination.
He noticed that in the radar chart (Fig. 9C), the tail of
the illumination dimension was quite wide, indicating that
most images were in relatively bright environments. Thus,
he chose illumination as the Y-axis. Then, since the KL
divergence of fog was slightly higher than that of rain, he de-
cided to choose fog as the X-axis for exploration. Besides, he
wanted to generate more images with a small range of fog to
add more possibilities, making the fog dimension smoother
and more uniformly distributed. Integrating the information
observed earlier, he explored and analyzed the dimensions
of fog and illumination in the sample view (Fig. 9E). The
heatmap distribution and the height of the bars on the axes
confirmed his analysis (Fig. 9E,). He then selected the
upper-left section (Fig. 9E;), which represented highways
with high illumination and low fog, meaning higher visibility
(Fig. 9E,). E3 wanted to transform and generate images
with lower visibility (decreasing illumination and increasing
fog), targeting the originally vacant bottom-right area in
the sample view (Fig. 9E5). Therefore, in the control panel
(Fig. 9D), he adjusted the fog to [0.05, 0.35] and the
illumination to [0.1, 0.5]. Upon completion, the evaluation
metrics results were shown in (Fig. 9F). He observed the
single batch and noticed that the values of all four metrics
were not high, which he considered that the domain variation
issues introduced by the models generating fog and illumi-
nation were responsible, but the overall generated effect was
acceptable. Besides, he observed the part outlined in yellow
dashed lines in Fig. 9E,, which precisely corresponded to
the region he intended to supplement. Fig. 9E5 represents
the distribution of image samples across the entire visible
area of the sample view, with the generation range desired
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by E3 outlined in a blue dashed line. Eventually, the style of
the images he generated was shown in Fig. 9]J.

After using HuGe to adjust weather conditions and ac-
knowledging the system’s capability to insert any object, E3
proposed the idea of controllably generating foreign objects
in challenging weather conditions. According to E3, this
idea was sparked by his own experience of encountering a
cow in a residential area while driving, an event he deemed
highly improbable yet verifiably real. This type of scenario,
involving unusual behaviors of other road users (e.g., ani-
mals crossing the road), is precisely the kind of corner case
we highlighted as crucial in the Introduction section. This
spurred his interest in using HuGe to generate similar and
uncommon images. First, he selected “Residential” as the
scene (Fig. 9G). Subsequently, in the radar chart (Fig. 9H),
he observed that “rain” exhibited the highest KL divergence,
indicating the greatest imbalance. Thus, in the sample view,
he selected “Illum” as the x-axis and “Rain” as the y-axis
(Fig. 91;). He selected a batch of images depicting clear
weather from the bottom right corner as the base (Fig. 91,).
He entered “cow” in the object bar to specify the object type.
Based on his understanding of the random appearance of
foreign objects, he adjusted the degree of occlusion (“Oc-
clusion”) in the control panel to not exceed seventy percent
and chose a distance range of [2,4], without specifying
a location. Moreover, aiming to fill the relatively vacant
area by moving the original region upwards (Fig. 915), as
indicated by the rectangular distribution in the sample view,
he adjusted “Rain” to [0.2, 0.6]. Next, the yellow dots in
Fig. 91, illustrated the distribution of the generated images.
By hovering over the dot with the mouse and clicking to
select the image, he observed the enlarged original and gen-
erated images on the left side. Fig. 915 and Fig. 9E5 convey
similar meanings, with the blue dashed line indicating the
area where triangles appear in the sample view of Fig. 9I.
The generation samples are shown in Fig. 9K.

In this case, E3 was notably impressed with the capabili-
ties of HuGe for generating conditions of extreme weather or
rare and realistic scenes. E3 successfully identified and filled
the data gaps in extreme weather conditions by analyzing and
manipulating the BDD100K dataset. He noted: “The coor-
dinated design of the sample view helps me quickly identify
which dimensional areas are missing or sparse, and after
generation, I can see the filled areas.” E3 also enhanced
the diversity and practicality of the dataset by generating
uncommon images, such as scenes of encountering cows
while driving in the rain. He thinks that HuGe offers a
comfortable and logically clear interaction experience, with
the implemented functionalities being quite exciting.

7.3. Metric-Based Evaluation

To evaluate the efficacy of our generated images in
advancing model performances for specific target scenarios,
we conducted a metric-based evaluation of our method’s
impact on improving the detection model’s performance.
This evaluation addresses the close-range sample deficiency

in the Cityscapes dataset identified in Section 7.1. By aug-
menting the dataset with our generated images, we aimed to
improve the overall training performances, as measured by
the metric mean Average Precision (mAP).

Training set. The Cityscapes dataset is a widely recog-
nized benchmark for semantic segmentation in autonomous
driving scenarios, comprising 19 semantic classes. For our
object detection task, we selected 4 categories of differ-
ent sizes of traffic-relevant objects, including cars, persons,
bicycles, and trucks—encompassing three different vehi-
cle sizes and a category of human. We transformed the
segmentation annotations into bounding boxes, effectively
converting them into an object detection dataset suitable for
our purposes. Therefore, we utilized 2,975 training images
from the Cityscapes dataset as a base training set.

Fintuning set. We meticulously prepared three dis-
tinct finetuning datasets to comprehensively evaluate the
usability of HuGe generated data: CARLA Dataset, HuGe
Dataset and the selected Cityscapes Dataset. For the CARLA
dataset, we selected 827 images from the CARLA Detec-
tion dataset[10], focusing on close-range vehicular environ-
ments. These images were strategically extracted to repre-
sent the most proximal range, ensuring relevance to near-
distance object detection scenarios. The CARLA Detection
dataset itself was generated using the CARLA simulator,
with data collected in autopilot mode across diverse envi-
ronments, including TownO1, Town02, Town03, Town04,
and TownO5. For the HuGe dataset, We generated 827
synthetic images through the initial process of Section 7.1,
specifically simulating close-range driving scenarios. These
meticulously crafted images were derived from our training
set and served as supplementary fine-tuning data, strate-
gically designed to enhance the model’s object detection
capabilities in near-proximity contexts. Lastly, to address
potential bias in finetuning result produced by the original
Cityscapes in creating HuGe dataset, we curated the selected
Cityscapes Dataset through a refined selection process. This
involved creating a specialized 827-image subset from the
Cityscapes datasets, deliberately selecting the foundational
images used in the initial generation process.

Validation set. We prepared two validation sets for
evaluation: the Cityscapes validation set and the specialized
close-range validation set. The standard Cityscapes valida-
tion set of 500 images demonstrates model performance in
common scenarios, providing a baseline for comparison.
The close-range validation set, also containing 500 im-
ages, focuses on close-range scenarios to accurately assess
model performance in scenarios similar to those identified
in Section 7.1. Here, we constructed the specialized close-
range validation set, which selected 500 images from the
BDD100K validation set that aligned with the conditions of
being close and in the center. This approach allowed us to
more precisely evaluate model performance in the specific
close-range scenarios of interest.

Procedures. Our experimental setup involved train-
ing two classic and widely used object detection models:
YOLOVS [24] and Faster R-CNN [40]. First, we trained
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each model for 300,000 iterations on the Cityscapes training
set to serve as base models. Then, we employed a transfer
learning approach, fine-tuning the models (pre-trained on
the Cityscapes dataset) using each fine-tuning set for 3,000
iterations, including the CARLA Dataset, the HuGe Dataset,
and the selected Cityscapes Dataset. After fine-tuning, we
validated the base models of Faster R-CNN and YOLOVS
on the Cityscapes validation set and the close-range valida-
tion set. Additionally, we evaluated the fine-tuned models
(finetuned on the three fine-tuning sets) on the close-range
validation set.

Results. In Table 1, we compared the performance of
Faster R-CNN and YOLOVS5 on the original Cityscapes Val-
idation set and the Close-range Validation set. Both Faster
R-CNN and YOLO is trained only on the Cityscapes training
set. As illustrated in Table 1, the base models’ detection
accuracy on the selected close-range validation set was
substantially lower compared to the original Cityscapes vali-
dation set. This insight confirmed the performance gap in the
models trained on the Cityscapes dataset, particularly when
detecting objects in close-range scenarios.

As further detailed in Table 2, we conducted a compar-
ative evaluation of the model performance on close-range
validation set when finetuned with the CARLA dataset, the
selected Cityscapes datasets and the HuGe dataset on the
Close-range Validation set. For YOLOVS, the highest mAP
values were achieved when fine-tuned on the HuGe dataset,
with significant gains observed across all object categories.
Specifically, the mean Average Precision (mAP) for car
detection improved substantially across both architectures
tested. For YOLOVS, the mAP increased from 34.8% to
53.2%. Similarly, Faster R-CNN exhibited an improvement
from 38.4% to 42.8%. Furthermore, both models showed
considerable improvements in detecting other object classes,
particularly persons and bicycles.

In contrast, fine-tuning on the CARLA dataset resulted
in only modest improvements for YOLOv5 and marginal
changes for Faster R-CNN, indicating limited generalizabil-
ity of the CARLA data to real-world scenarios. The selected
Cityscapes dataset, while offering improvements in certain
categories, showed lower overall performance compared to
the HuGe dataset. These results underscore the effectiveness
of the HuGe dataset in bridging the performance gap for the
detection of objects at close range.

Furthermore, an interesting anomaly was observed in
the case of truck detection using Faster R-CNN, where
performance degraded after finetuned on HuGe, and the best
performance was achieved when finetuned on the selected
Cityscapes dataset. We hypothesize that this discrepancy
may be attributed to the limited number of truck instances in
the dataset and the structural differences between YOLOvVS
and Faster R-CNN, leading to increased variability in the
performance of Faster R-CNN on this class. YOLOvVS’s grid-
based, one-stage detection is more resilient to sparse data,
while Faster R-CNN’s two-stage mechanism may struggle
with imbalanced classes, making its truck detection perfor-
mance unstable.

Table 1
Performance Comparision of Base Models on Different Valida-
tion Set

Validation

Model Set car  person bicycle truck
Cityscapes 70.5 46.7 347 33.9
YOLOvS(base) | 1o range | 348 181 113 82
Faster R-CNN | Cityscapes 62.4 433 42.6 50.0
(base) Close-range | 38.4 16.2 32.1 15.4
Table 2

Performance Comparision on Close-range Validation set of
Models Finetuned on Different Fintuning Dataset

Finetune
Model car

erson  bicycle truck
Dataset P 4

None(base) | 348 18.1 11.3 8.2

Cityscapes | 27.8 20.4 38.1 9.48
CARLA 315 185 12.1 7.62
HuGe 53.2 375 40.5 23.4

YOLOv5

None(base) | 38.4 16.2 321 15.4
Cityscapes 313 117 26.8 34.1
CARLA 27.3 10.0 12.9 19.4
HuGe 428 27.1 40.0 5.9

Faster R-CNN

7.4. Expert Interview

To better evaluate the effectiveness of HuGe, we con-
ducted individual interviews with experts E1-E6 (their back-
ground has been introduced at the beginning of Section 3.1
and Section 7). First, we briefly introduced our system and
provided a simple tutorial demonstrating the visual design
and interaction of HuGe. Next, experts could explore the
system for about an hour. Then we conducted a half-hour
individual interview with each expert and gathered their
valuable feedback.

System Design and Usability. The feedback on our
visual analytics system indicated that the system is “easy
to understand” and “simple to operate”. For example, E6
mentioned that “The histogram and heatmaps allow me to
quickly grasp the object distribution and identify any gaps
in the dataset at a glance.” Experts found that the sample
view effectively showcased the points they wanted to ana-
lyze, revealing uneven distributions of image datasets across
various dimensions. E2 valued the ability of HuGe to allow
users to select any two dimensions for analysis, observe the
distribution of individual image samples within the entire
dataset, and support effective comparisons. He believed this
approach allows for flexibility and focused analysis, a point
also mentioned by E1 and E5. Most experts appreciated the
interactive functionality of heatmap brushing selection and
dimension analysis. Additionally, E3 and E6 both agreed
that this system can assist data analysts in exploring the
dimensional features of autonomous driving images and
uncovering potential issues. For instance, E3 discovered
incorrect ground truth annotations for buses in parking lot
scenes using the object heatmap.

Effectiveness. Experts were generally satisfied with the
overall process and believed that HuGe can significantly
reduce the time and manpower cost for high-quality image
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collection or generation in the field of autonomous driv-
ing. Also, the generated images can effectively supplement
the existing dataset to enhance model training. Regarding
generating different weather conditions, E3 mentioned that
this generation method does not require complex historical
data and environmental parameters for adjustment, only the
intensity of the corresponding weather needs to be adjusted.
Moreover, E5 pointed out, “Although the generation speed
is not very fast, it can generate images that are difficult to
capture in real-world scenarios, which can greatly save the
costs of collecting image data for autonomous driving.”
Opverall, experts provided positive feedback on the system’s
effectiveness, believing that it can enrich the autonomous
driving image dataset, especially for samples that are dif-
ficult to collect in real world.

Improvement. Experts also offered several suggestions
for improving HuGe. Firstly, they hoped the efficiency of im-
age generation could be enhanced to improve the timeliness
of generating larger-scale image data. Secondly, improving
the image generation effect with more advanced models.
Thirdly, editing only a part of an image, rather than the
whole, with current technologies (such as GAN models and
diffusion models) can easily result in domain inconsistencies
within the image, which should be iteratively considered in
future work.

8. Discussion and Future Work

This section discusses several issues of HuGe and possi-
ble solutions for future work.

Evaluating reality in generated images. Assessing the
reality in generated images involves multiple subjective con-
siderations, such as visual fidelity, contextual coherence, and
user satisfaction, which lack quantitative metrics. Attaining
authentic reality requires evaluating the model’s capabilities,
the diversity and quality of datasets, and grasping the nu-
ances of human perception. While FID and IS provide some
measures of image quality, they don’t capture all dimen-
sions of reality, as seen in Section 7.1 (Fig. 1D;) and Sec-
tion 7.2 (Fig. 9F). These metrics mainly gauge similarity
to real datasets without fully representing image fidelity.
In our work, the generated objects in images occasionally
do not match the actual scene in terms of target scale and
brightness, which is an inevitable problem when generating
large-scale image datasets. Such imperfections are largely
due to the inherent limitations of current diffusion-based
generative models, including GLIGEN. Achieving perfect
photorealism, especially under open-world, complex driving
conditions, remains a significant challenge for the field. A
high frequency of such distorted images could introduce bias
into the training dataset, leading to model overfitting on spe-
cific distortion patterns and subsequent underperformance in
real-world scenarios. However, while this discrepancy is un-
avoidable, it only occurs with a low frequency and does not
significantly impact the overall results in training models, as
demonstrated in Section 7.3. Furthermore, within the sample
view, these anomalous images are readily discernible from
their surrounding counterparts, enabling users to efficiently

identify them and further exclude them from the dataset.
Besides manually filtering out low-quality images, we can
add more detailed constraints on objects’ depth and size, and
use more advanced and stable image generation models like
diffusion models for weather transformation in future work.

Stiking a better trade-off of between image gener-
ation speed and reality. Evaluating the reality of gener-
ated images transcends subjective judgments, demanding
more than just quantitative metrics, as the performance
of generative models fluctuates across various scenarios,
influencing the reality of the output. Despite the generative
models mentioned in Section 5 holding promise for creating
relatively realistic images, they face limitations in ensuring
precise object insertion and rapid generation. Currently, if
one wishes to generate a large batch of images in HuGe,
time becomes a limiting factor. Moreover, to achieve faster
generation speed, compromises often have to be made in
terms of resolution and detail. In future work, we aim to
use lightweight generative models to balance the generation
speed and reality.

Enabling more fine-grained control of weather condi-
tions. Enhancing precision in weather condition simulation
is key to improving autonomous driving systems. Current
models struggle with extreme or nuanced weather, partic-
ularly in replicating subtle lighting and visual effects. In
the control panel (Fig. 1D;), supported by an end-to-end
generative algorithm, we currently allow only a single pa-
rameter to adjust each weather condition, which lack the con-
ditions for fine-grained control of weather conditions. For
instance, accurately generating images in complex weather
conditions, such as rain or fog, requires more fine-grained
control over elements like the intensity and distribution of
water droplets or fog and their interactions with light and the
environment. Furthermore, since generation and detection
correspond to each other, it is only possible to detect weather
deficiencies in one parameter, which limits our ability to
identify imbalanced feature distributions in the dataset, as
only one parameter of each weather condition does not allow
for a detailed analysis of the dataset. In future work, we plan
to integrate simulators like CARLA[12] to achieve more
fine-grained weather control.

Scalability of knowledge-based object insertion. The
knowledge-based controllable object insertion method dis-
cussed in Section 5.2 leverages spatial context learning,
requiring user-input masks for CVAE processing a challenge
for mask-lacking datasets like BDD10OK. As an alternative,
we employ optimization through random noise sampling,
enhancing scalability and speed over CVAE, which is essen-
tial for rapid adaptation in diverse image sets. However, this
method demands more from users in setting constraints, as
it lacks the mask-based guidance of spatial context learning,
highlighting a trade-off between scalability and user input
reliance. Additionally, even when models are employed to
learn object features and constraints are added to guide the
output objects, it is still possible that some objects with an
inappropriate scale are generated. Nonetheless, since these
incongruent images are often very obvious, users can easily
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filter out the flawed results. Therefore, our future work will
explore developing intuitive algorithms to reduce reliance on
detailed user inputs while enhancing the system’s adaptabil-
ity and fidelity for object insertion.

Other future work. Our approach inherently integrates
human knowledge with generative Al, primarily focusing
on testing and evaluating its usefulness and effectiveness
in the field of autonomous driving. However, it can also
be seamlessly adapted to anomaly detection scenarios with
limited datasets, such as security screening, surveillance,
and medical image analysis. For instance, in X-ray security
screening for threat detection, this approach could digitally
insert simulated threats like knives or guns into images, aug-
menting datasets to train more robust Al models. Moreover,
with the rapid advancement of Al-driven video generation
technologies, we plan to further extend our framework to-
ward video data augmentation, incorporating temporal con-
sistency and dynamic scene modeling to meet the growing
demands of video-based applications. In addition, we will
conduct a long-term study with more domain experts to
further evaluate the usability and effectiveness of HuGe.

9. Conclusion

In this work, we designed and developed HuGe, a visual
analytics system for generating autonomous driving images
through a controllable, human-guided approach. It enables
users to refine image datasets for enhanced training cover-
age. Our framework together with semi-automated genera-
tion methods streamline sample generation, reducing time
and effort. Through case studies, a metric-based evaluation
and expert interviews, we confirmed HuGe’s ability to ef-
fectively extend dataset coverage. Future efforts will focus
on enhancing image quality with advanced techniques and
further usability assessments with domain experts.
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